We are asked to evaluate the limit:
\[
\lim_{x \to 1} \frac{\frac{1}{2x + 1} - \frac{1}{3}}{x - 1}
\]
Step 1: Simplify the numerator
First, simplify the expression inside the numerator:
\[
\frac{1}{2x + 1} - \frac{1}{3}
\]
To combine these fractions, find the common denominator:
\[
\frac{1}{2x + 1} - \frac{1}{3} = \frac{3 - (2x + 1)}{3(2x + 1)} = \frac{3 - 2x - 1}{3(2x + 1)} = \frac{2 - 2x}{3(2x + 1)}
\]
Thus, the original expression becomes:
\[
\frac{\frac{2 - 2x}{3(2x + 1)}}{x - 1}
\]
This simplifies to:
\[
\frac{2(1 - x)}{3(2x + 1)(x - 1)} = \frac{-2(x - 1)}{3(2x + 1)(x - 1)}
\]
Step 2: Cancel out common factors
We can cancel out \( (x - 1) \) in the numerator and denominator:
\[
\frac{-2}{3(2x + 1)}
\]
Step 3: Evaluate the limit
Now, substitute \( x = 1 \) into the simplified expression:
\[
\lim_{x \to 1} \frac{-2}{3(2x + 1)} = \frac{-2}{3(2(1) + 1)} = \frac{-2}{3(3)} = \frac{-2}{9}
\]
Thus, the value of the limit is:
\[
\frac{-2}{9}
\]
Thus, the correct answer is option (A), \( \frac{-2}{9} \).