An assignment of probabilities for outcomes of the sample space \( S = \{1, 2, 3, 4, 5, 6\} \) is as follows:
\[ \begin{array}{c|c c c c c c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline k & 3k & 5k & 7k & 9k & 11k \end{array} \]
If this assignment is valid, then the value of \( k \) is:
For the assignment to be valid, the sum of all probabilities must be equal to 1.
Therefore, we can write: \[ k + 3k + 5k + 7k + 9k + 11k = 1 \] Simplifying: \[ k(1 + 3 + 5 + 7 + 9 + 11) = 1 \] \[ k \times 36 = 1 \] \[ k = \frac{1}{36} \] Thus, the value of \( k \) is \( \frac{1}{36} \).
Thus, the correct answer is option (E), \( \frac{1}{36} \).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: