Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The focus of the parabola \(y^2 + 4y - 8x + 20 = 0\) is at the point:
Let \( S \) denote the set of all subsets of integers containing more than two numbers. A relation \( R \) on \( S \) is defined by:
\[ R = \{ (A, B) : \text{the sets } A \text{ and } B \text{ have at least two numbers in common} \}. \]
Then the relation \( R \) is:
The centre of the hyperbola \(16x^2 - 4y^2 + 64x - 24y - 36 = 0\) is at the point: