We are given the expression:
\[ \frac{1}{\tan A - \tan B} \]
Using the identity for the tangent of the difference of two angles:
\[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \]
Rearranging this identity:
\[ \tan A - \tan B = \frac{\sin A \sin B}{\cos(A - B)} \]
So, we can conclude that:
\[ \frac{1}{\tan A - \tan B} = \frac{\cos A \cos B}{\sin(A - B)} \]
Thus, the correct answer is option (E), \( \frac{\cos A \cos B}{\sin(A - B)} \).