Let \(S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\). Define \(f : S → S\) as
\(f(n) = \begin{cases} 2n, & \text{if } n \in \{1,2,3,4,5\} \\ 2n-11, & \text{if } n \in \{6,7,8,9,10\} \end{cases}\)
Let \(g : S → S\) be a function such that.
\((f \circ g)(n) = \begin{cases} n + 1, & \text{if } n \text{ is odd} \\ n - 1, & \text{if } n \text{ is even} \end{cases}\)
Then \(g(10) \cdot (g(1) + g(2) + g(3) + g(4) + g(5))\) is equal to __________.