Question:

For k ∈ R, let the solution of the equation
\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k, \quad 0 < |x| < \frac{1}{\sqrt{2}}\)
Inverse trigonometric functions take only principal values. If the solutions of the equation x2 – bx – 5 = 0 are
\(\frac{1}{α^2}+\frac{1}{β^2} \)and \(\frac{α}{β}\)
, then b/k2 is equal to_____.

Updated On: Oct 17, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 12

Solution and Explanation

The correct answer is 12
\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k\)
\(⇒ \)\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\sqrt{1 - x^2}\right)\right)\right)\right) = k\)
\(⇒ \)\(\cos\left(\sin^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right)\right) = k\)
\(⇒\) \(\frac{\sqrt{1 - 2x^2}}{\sqrt{1 - x^2}} = k\)
\(⇒\) \(\frac{1 - 2x^2}{1 - x^2} = k^2\)
\(⇒ 1-2x^2\)
\(= k^2-k^2x^2\)
∴ α,β be the roots of x2-(k2-1)/(k2-2) = 0
\(\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 2\left(\frac{k^2 - 2}{k^2 - 1}\right) \dots (1)\)
and \(\frac{α}{β} = -1....(2)\)
\(∴\) \(2\left(\frac{k^2 - 2}{k^2 - 1}\right)(-1) = -5\)
\(⇒ k^2 = \frac{1}{3}\)
and b = S.R
\(2\left(\frac{k^2 - 2}{k^2 - 1}\right)( - 1) = 4\)
\(\therefore \frac{b}{k^2} = \frac{4}{\frac{1}{3}}\)
= 12

Was this answer helpful?
4
6

Concepts Used:

Inverse Trigonometric Functions

The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Domain and Range Of Inverse Functions

Considering the domain and range of the inverse functions, following formulas are important to be noted:

  • sin(sin−1x) = x, if -1 ≤ x ≤ 1
  • cos(cos−1x) = x, if -1 ≤ x ≤ 1
  • tan(tan−1x) = x, if -∞ ≤ x ≤∞
  • cot(cot−1x) = x, if -∞≤ x ≤∞
  • sec(sec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞
  • cosec(cosec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞

Also, the following formulas are defined for inverse trigonometric functions.

  • sin−1(sin y) = y, if -π/2 ≤ y ≤ π/2
  • cos−1(cos y) =y, if 0 ≤ y ≤ π
  • tan−1(tan y) = y, if -π/2 <y< π/2
  • cot−1(cot y) = y if 0<y< π
  • sec−1(sec y) = y, if 0 ≤ y ≤ π, y ≠ π/2

cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0