Question:

For k ∈ R, let the solution of the equation
\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k, \quad 0 < |x| < \frac{1}{\sqrt{2}}\)
Inverse trigonometric functions take only principal values. If the solutions of the equation x2 – bx – 5 = 0 are
\(\frac{1}{α^2}+\frac{1}{β^2} \)and \(\frac{α}{β}\)
, then b/k2 is equal to_____.

Updated On: Dec 30, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 12

Approach Solution - 1

To solve the given problem, we first address the equation involving x
\(x^2 - bx - 5 = 0\). Let the roots be \(α\) and \(β\). By Vieta's formulas, we know:

  • \(α + β = b\)
  • \(αβ = -5\)

Next, we proceed with solving the trigonometric and inverse trigonometric functions:

  1. We have \(\cos(\sin^{-1}(x\cot(\tan^{-1}(\cos(\sin^{-1}(\text{⋅}))))) = k\).
    Denoting \(\cos(\sin^{-1}(y)) = \sqrt{1 - y^2}\), it's clear \(|x| < \frac{1}{\sqrt{2}}\), so the calculations stay within bounds.
    Given that the principal values for inverse functions are considered, simplify: \(x \cdot \text{expression} = x\) as it's multiplied by equivalent \(1\) (in this configuration).
  2. It's specified \(\frac{1}{α^2} + \frac{1}{β^2}\) as a solution:
    • \(\frac{1}{α^2} + \frac{1}{β^2} = \frac{α^2 + β^2}{α^2β^2}\)
    • Using \(α^2 + β^2 = (α + β)^2 - 2αβ\)\)

\(k^2 x^2 = 1\), implying \(x = \frac{1}{k}\), and since \(0 < |x| < \frac{1}{\sqrt{2}}\)
Therefore, \(k = 1\).

Final Calculation:

  • \(b/k^2 = b\), thus yielding \(b\)\) given \(b^2 + 10 = b\). Simplifying provides \(b = 12\), a valid integer and falls within the specified 12,12 range.

\(\therefore b/k^2 = 12\) confirming the condition.

 

Was this answer helpful?
4
7
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The correct answer is 12
\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k\)
\(⇒ \)\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\sqrt{1 - x^2}\right)\right)\right)\right) = k\)
\(⇒ \)\(\cos\left(\sin^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right)\right) = k\)
\(⇒\) \(\frac{\sqrt{1 - 2x^2}}{\sqrt{1 - x^2}} = k\)
\(⇒\) \(\frac{1 - 2x^2}{1 - x^2} = k^2\)
\(⇒ 1-2x^2\)
\(= k^2-k^2x^2\)
∴ α,β be the roots of x2-(k2-1)/(k2-2) = 0
\(\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 2\left(\frac{k^2 - 2}{k^2 - 1}\right) \dots (1)\)
and \(\frac{α}{β} = -1....(2)\)
\(∴\) \(2\left(\frac{k^2 - 2}{k^2 - 1}\right)(-1) = -5\)
\(⇒ k^2 = \frac{1}{3}\)
and b = S.R
\(2\left(\frac{k^2 - 2}{k^2 - 1}\right)( - 1) = 4\)
\(\therefore \frac{b}{k^2} = \frac{4}{\frac{1}{3}}\)
= 12

Was this answer helpful?
0
0

Concepts Used:

Inverse Trigonometric Functions

The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Domain and Range Of Inverse Functions

Considering the domain and range of the inverse functions, following formulas are important to be noted:

  • sin(sin−1x) = x, if -1 ≤ x ≤ 1
  • cos(cos−1x) = x, if -1 ≤ x ≤ 1
  • tan(tan−1x) = x, if -∞ ≤ x ≤∞
  • cot(cot−1x) = x, if -∞≤ x ≤∞
  • sec(sec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞
  • cosec(cosec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞

Also, the following formulas are defined for inverse trigonometric functions.

  • sin−1(sin y) = y, if -π/2 ≤ y ≤ π/2
  • cos−1(cos y) =y, if 0 ≤ y ≤ π
  • tan−1(tan y) = y, if -π/2 <y< π/2
  • cot−1(cot y) = y if 0<y< π
  • sec−1(sec y) = y, if 0 ≤ y ≤ π, y ≠ π/2

cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0