Let \(\alpha, \beta\) and \(\gamma\) be three positive real numbers Let \(f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R\) and \(g: R \rightarrow R\) be such that \(g(f(x))=x\) for all \(x \in R\) If \(a_1, a_2, a_3, \ldots, a_n\) be in arithmetic progression with mean zero, then the value of \(f\left(g\left(\frac{1}{n} \displaystyle\sum_{i=1}^n f\left(a_i\right)\right)\right)\)is equal to :