Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
Assume a is any number in the general domain of the corresponding trigonometric function, then we can explain the following limits.
We know that the graphs of the functions y = sin x and y = cos x detain distinct values between -1 and 1 as represented in the above figure. Thus, the function is swinging between the values, so it will be impossible for us to obtain the limit of y = sin x and y = cos x as x tends to ±∞. Hence, the limits of all six trigonometric functions when x tends to ±∞ are tabulated below: