If the system of equations
$ x + y + z = 6 $,
$ 2x + 5y + \alpha z = \beta $,
$ x + 2y + 3z = 14 $
has infinitely many solutions, then $ \alpha + \beta $ is equal to:
\(\begin{vmatrix}1&1&1\\2&5&α\\1&2&3\end{vmatrix}\)=1(15−2α)–1(6−α)+1(−1)
=15–2α–6+α−1
=8–α
For infinite solutions,~Δ=0 ⇒α=8
\(\triangle_x\)=\(\begin{vmatrix}6&1&1\\β&5&8\\14&2&3\end{vmatrix}\)= 6(−1)−1(3β–112)+1(2β−70)
=−6–3β+112+2β–70
=36–β
\(\triangle_x\)=0
⇒ For β=36
α+β=44
So, the correct option is (C): 44
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.
The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’
The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.
Differential equations can be divided into several types namely