If \(A=\frac{1}{2}\begin{bmatrix}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{bmatrix}\), then :
Let the shortest distance between the lines $L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0$ and $L_1: x+1=y-1=4-z$ be $2 \sqrt{6}$ If $(\alpha, \beta, \gamma)$ lies on $L$, then which of the following is NOT possible?
For the system of linear equations\(\alpha x+y+z=1, x+\alpha y+z=1, x+y+\alpha z=\beta\) which one of the following statements is NOT correct ?
Let αx=exp(xβyγ) be the solution of the differential equation 2x2ydy−(1−xy2) dx = 0, x>0 , y(2)=\(\sqrt {log_e2}\). Then α+β−γ equals :
Consider the lines $L_1$ and $L_2$ given by
$L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2} $
$ L_2: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}$
A line $L_3$ having direction ratios $1,-1,-2$, intersects $L_1$ and $L_2$ at the points $P$ and $Q$ respectively Then the length of line segment $P Q$ is
If a point $P (\alpha, \beta, \gamma)$ satisfying $(\alpha\,\, \beta\,\, \gamma) \begin{pmatrix} 2 & 10 & 8 \\9 & 3 & 8 \\8 & 4 & 8\end{pmatrix}=(0\,\,0\,\,0) $ lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to :
The absolute difference of the coefficients of \(x^{10}\) and \(x^7\) in the expansion of \(\left(2x^2 + \frac{1}{2x}\right)^{11}\) is equal to:
The number of points on the curve \(y=54 x^5-135 x^4-70 x^3+180 x^2+210 x\) at which the normal lines are parallel \(to x+90 y+2=0\) is
The sum of the absolute maximum and minimum values of the function \(f(x)=\left|x^2-5 x+6\right|-3 x+2\)in the interval \([-1,3]\) is equal to :
If (21)18 + 20·(21)17 + (20)2 · (21)16 + ……….. (20)18 = k (2119 – 2019) then k =
Shortest distance between lines \(\frac{(x-5)}{4}\)=\(\frac{(y-3)}{6}\)=\(\frac{(z-2)}{4}\) and \(\frac{(x-3)}{7}=\frac{(y-2)}{5}=\frac{(z-9)}{6}\) is ?