If [t] denotes the greatest integer ≤ t, then the number of points, at which the function\(f(x) = 4|2x + 3| + 9\lfloor x + \frac{1}{2} \rfloor - 12\lfloor x + 20 \rfloor\)is not differentiable in the open interval (–20, 20), is ____ .
Let \(A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix}\) where \(i=\sqrt{−1}.\) Then, the number of elements in the set \(\left\{n∈\left\{1,2,…,100\right\}:A^n=A\right\}\) is ________.
Let y = y(x) be the solution curve of the differential equation\(\sin(2x^2) \log_e(\tan(x^2)) \,dy + (4xy - 4\sqrt{2}x\sin(x^2 - \frac{\pi}{4})) \,dx = 0, \quad 0 < x < \sqrt{\frac{\pi}{2}}\)which passes through the point \((\sqrt{\frac{π}{6}},1)\). Then \(|y(\sqrt{\frac{π}{3}})|\)is equal to _______.
2sin(\(\frac{\pi}{22}\))sin(\(\frac{3\pi}{22}\))sin(\(\frac{5\pi}{22}\))sin(\(\frac{7\pi}{22}\))sin(\(\frac{9\pi}{22}\)) is equal to
Let f : R → R be a continuous function satisfying f(x) + f(x + k) = n, for all x ∈ R where k > 0 and n is a positive integer. If \(l_1 = \int_{0}^{4nk} f(x) \, dx\) and \(l_2 = \int_{-k}^{3k} f(x) \, dx\), then
Let for n = 1, 2, …, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is \(\frac{1}{(n+1)^2}\) . Then the value of \(\frac{1}{26} + \sum_{n=1}^{50} \left(S_n+\frac{2}{n+1}-n-1 \right)\) is equal to ________.
Let \(f(x)=max\left\{|x+1|,|x+2|,……,|x+5|\right\} \)Then \(\int_{-6}^{0} f(x) \, dx\)is equal to_______
Let S be the set of all the natural numbers, for which the line \(\frac{x}{a}+\frac{y}{b}=2 \)is a tangent to the curve\((\frac{x}{a})^n+(\frac{y}{b})^n=2 \)at the point (a, b), ab ≠ 0. Then :
The number of 5-digit natural numbers, such that the product of their digits is 36, is _____ .