Let \( R = \{a, b, c, d, e\} \) and \( S = \{1, 2, 3, 4\} \). Total number of onto functions \( f: R \to S \) such that \( f(a) \neq 1 \), is equal to:
\(\lim\limits_{x\rightarrow0}\left(\left(\frac{1-cos^2(3x)}{cos^3(4x)}\right)\left(\frac{sin^3(4x)}{(log_e(2x+1))^5}\right)\right)\)is equal to
Let $f: R -\{2,6\} \rightarrow R$ be real valued function defined as $f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}$ Then range of $f$ is
Let the area enclosed by the lines \( x + y = 2 \), \( y = 0 \), \( x = 0 \), and the curve \( f(x) = \min \left\{ x^2 + \frac{3}{4}, 1 + [x] \right\} \), where \( [x] \) denotes the greatest integer less than or equal to \( x \), be \( A \). Then the value of \( 12A \) is ____________.
The value of $\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$ is equal to
Let g(x) = f(x) + f(1 - x) and f''(x) > 0, x ∈ (0,1). If g is decreasing in the interval (0, α) and increasing in the interval (α, 1), then tan-1 (2α) + tan-1 (\(\frac{1}{α}\)) + tan-1\((\frac{α+1}{α})\) is equal to