Match List-I with List-II.
A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
The IUPAC name of the following compound is:
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is:
A line charge of length \( \frac{a}{2} \) is kept at the center of an edge BC of a cube ABCDEFGH having edge length \( a \). If the density of the line is \( \lambda C \) per unit length, then the total electric flux through all the faces of the cube will be : (Take \( \varepsilon_0 \) as the free space permittivity)
A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).
In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is: