HHH \(\to 0\)
HHT \(\to 0\)
HTH \(\to 1\)
HTT \(\to 0\)
THH \(\to 1\)
THT \(\to 1\)
TTH \(\to 1\)
TTT \(\to 0\)
Probability distribution: \[ \mu = \sum x_i P_i = \frac{1}{2} \] \[ \sigma^2 = \sum x_i^2 P_i - \mu^2 = \frac{1}{2} \times 1^2 + \frac{1}{2} \times 1^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ 64(\mu + \sigma^2) = 64\left(\frac{1}{2} + \frac{1}{4}\right) = 64 \times \frac{3}{4} = 48 \]
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]