HHH \(\to 0\)
HHT \(\to 0\)
HTH \(\to 1\)
HTT \(\to 0\)
THH \(\to 1\)
THT \(\to 1\)
TTH \(\to 1\)
TTT \(\to 0\)
Probability distribution: \[ \mu = \sum x_i P_i = \frac{1}{2} \] \[ \sigma^2 = \sum x_i^2 P_i - \mu^2 = \frac{1}{2} \times 1^2 + \frac{1}{2} \times 1^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ 64(\mu + \sigma^2) = 64\left(\frac{1}{2} + \frac{1}{4}\right) = 64 \times \frac{3}{4} = 48 \]
For the circuit shown above, the equivalent gate is:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
Given below are two statements: one is labelled as Assertion (A) and the other one is labelled as Reason (R).
Assertion (A): Emission of electrons in the photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.
Reason (R): A negative electric potential, which stops the emission of electrons from the surface of a photoemissive substance, varies linearly with the frequency of incident radiation.
In light of the above statements, choose the most appropriate answer from the options given below: