HHH \(\to 0\)
HHT \(\to 0\)
HTH \(\to 1\)
HTT \(\to 0\)
THH \(\to 1\)
THT \(\to 1\)
TTH \(\to 1\)
TTT \(\to 0\)
Probability distribution: \[ \mu = \sum x_i P_i = \frac{1}{2} \] \[ \sigma^2 = \sum x_i^2 P_i - \mu^2 = \frac{1}{2} \times 1^2 + \frac{1}{2} \times 1^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ 64(\mu + \sigma^2) = 64\left(\frac{1}{2} + \frac{1}{4}\right) = 64 \times \frac{3}{4} = 48 \]
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).