Given that \( f(x) \) is a polynomial of degree 2, let \( f(x) = ax^2 + bx + c \) where \( a \neq 0 \).
Using the given condition:
\( f(x)f\left( \frac{1}{x} \right) = f(x) + f\left( \frac{1}{x} \right) \)
Substituting the polynomial expression:
\( (ax^2 + bx + c)\left(a\frac{1}{x^2} + b\frac{1}{x} + c \right) = (ax^2 + bx + c) + \left( a\frac{1}{x^2} + b\frac{1}{x} + c \right) \)
After simplifying, the resulting equation becomes:
\( 1 - K^2 = -2K \)
The equation simplifies to:
\( K^2 - 2K - 1 = 0 \)
Solving this quadratic equation:
\( K = \frac{2 \pm \sqrt{(2)^2 - 4(1)(-1)}}{2(1)} \)
\( K = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \)
Using the identity:
\( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \)
From Vieta’s formulas:
\( \alpha + \beta = 2 \quad \text{and} \quad \alpha\beta = -1 \)
Thus,
\( \alpha^2 + \beta^2 = 2^2 - 2(-1) = 4 + 2 = 6 \)
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Let $\alpha$ be a solution of $x^2 + x + 1 = 0$, and for some $a$ and $b$ in $\mathbb{R}$, $ \begin{bmatrix} 1 & 16 & 13 \\-1 & -1 & 2 \\-2 & -14 & -8 \end{bmatrix} \begin{bmatrix} 4 \\a \\b \end{bmatrix} = \begin{bmatrix} 0 \\0 \\0 \end{bmatrix}. $ If $\frac{4}{\alpha^4} + \frac{m} {\alpha^a} + \frac{n}{\alpha^b} = 3$, then $m + n$ is equal to _____.
Identify [A], [B], and [C], respectively in the following reaction sequence : 