Step 1: Variable Substitution
Let \(\ln x = t\), which gives: \[ \frac{dx}{x} = dt \] The integral transforms to: \[ I = \int_{2}^{4} \frac{e^{1+t^2}}{e^{1+t^2} + e^{1+(6-t)^2}} dt \]
Step 2: Symmetry Property Application
Using the property of definite integrals, we can write: \[ I = \int_{2}^{4} \frac{e^{1+(6-t)^2}}{e^{1+(6-t)^2} + e^{1+t^2}} dt \]
Step 3: Combining Integrals
Adding both expressions for \(I\): \[ 2I = \int_{2}^{4} \left( \frac{e^{1+t^2} + e^{1+(6-t)^2}}{e^{1+t^2} + e^{1+(6-t)^2}} \right) dt = \int_{2}^{4} 1 \, dt \]
Step 4: Evaluation
Calculating the integral: \[ 2I = (t) \Big|_{2}^{4} = 4 - 2 = 2 \] Therefore: \[ I = 1 \]
Final Answer:
The value of the integral is \(1\).