Step 1: Variable Substitution
Let \(\ln x = t\), which gives: \[ \frac{dx}{x} = dt \] The integral transforms to: \[ I = \int_{2}^{4} \frac{e^{1+t^2}}{e^{1+t^2} + e^{1+(6-t)^2}} dt \]
Step 2: Symmetry Property Application
Using the property of definite integrals, we can write: \[ I = \int_{2}^{4} \frac{e^{1+(6-t)^2}}{e^{1+(6-t)^2} + e^{1+t^2}} dt \]
Step 3: Combining Integrals
Adding both expressions for \(I\): \[ 2I = \int_{2}^{4} \left( \frac{e^{1+t^2} + e^{1+(6-t)^2}}{e^{1+t^2} + e^{1+(6-t)^2}} \right) dt = \int_{2}^{4} 1 \, dt \]
Step 4: Evaluation
Calculating the integral: \[ 2I = (t) \Big|_{2}^{4} = 4 - 2 = 2 \] Therefore: \[ I = 1 \]
Final Answer:
The value of the integral is \(1\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: