Step 1: Variable Substitution
Let \(\ln x = t\), which gives: \[ \frac{dx}{x} = dt \] The integral transforms to: \[ I = \int_{2}^{4} \frac{e^{1+t^2}}{e^{1+t^2} + e^{1+(6-t)^2}} dt \]
Step 2: Symmetry Property Application
Using the property of definite integrals, we can write: \[ I = \int_{2}^{4} \frac{e^{1+(6-t)^2}}{e^{1+(6-t)^2} + e^{1+t^2}} dt \]
Step 3: Combining Integrals
Adding both expressions for \(I\): \[ 2I = \int_{2}^{4} \left( \frac{e^{1+t^2} + e^{1+(6-t)^2}}{e^{1+t^2} + e^{1+(6-t)^2}} \right) dt = \int_{2}^{4} 1 \, dt \]
Step 4: Evaluation
Calculating the integral: \[ 2I = (t) \Big|_{2}^{4} = 4 - 2 = 2 \] Therefore: \[ I = 1 \]
Final Answer:
The value of the integral is \(1\).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).