Step 1: Variable Substitution
Let \(\ln x = t\), which gives: \[ \frac{dx}{x} = dt \] The integral transforms to: \[ I = \int_{2}^{4} \frac{e^{1+t^2}}{e^{1+t^2} + e^{1+(6-t)^2}} dt \]
Step 2: Symmetry Property Application
Using the property of definite integrals, we can write: \[ I = \int_{2}^{4} \frac{e^{1+(6-t)^2}}{e^{1+(6-t)^2} + e^{1+t^2}} dt \]
Step 3: Combining Integrals
Adding both expressions for \(I\): \[ 2I = \int_{2}^{4} \left( \frac{e^{1+t^2} + e^{1+(6-t)^2}}{e^{1+t^2} + e^{1+(6-t)^2}} \right) dt = \int_{2}^{4} 1 \, dt \]
Step 4: Evaluation
Calculating the integral: \[ 2I = (t) \Big|_{2}^{4} = 4 - 2 = 2 \] Therefore: \[ I = 1 \]
Final Answer:
The value of the integral is \(1\).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: