A circle of radius \(2\) tangent to both axes in the second quadrant has centre \[ A = (-2,\,2),\qquad R=2. \]
The other circle has centre \[ B=(2,\,5), \] and radius \(r\). The distance between centres is \[ d=|AB|=\sqrt{(2-(-2))^2+(5-2)^2}=\sqrt{4^2+3^2}=5. \]
Two circles intersect in exactly two distinct points iff \[ |R-r|
Solve the inequalities: \[ |2-r|<5 \implies -5<2-r<5 \implies -33. \] Combining gives \(3
Compute: \[ 3\beta-2\alpha=3\cdot7-2\cdot3=21-6=15. \]
Answer
15 (Option 1)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.