Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is: 
\( \frac{\sqrt{2}\mu_0 I}{3 \pi a} \)
Given the diagram, we have the following information:
\( R_{ABC} = r \), and \( R_{ADC} = 2r \)
Also, the currents \( i_1 \) and \( i_2 \) are given by:
\( i_1 = \frac{2I}{3} \), and \( i_2 = \frac{I}{3} \)
The magnetic field at the center \( B_{\text{centre}} \) is calculated as:
\( B_{\text{centre}} = \frac{2\mu_0 I \sqrt{2}}{4 \pi \left( \frac{a}{2} \right)} \left[ \frac{2I}{3} - \frac{I}{3} \right] = \sqrt{2} \frac{\mu_0 I}{3\pi a} \)
The magnetic field at the center of a square loop is given by the formula: \[ B = \frac{\mu_0 I}{2a} \left( \frac{2}{\pi} \right) \] However, the presence of different resistances for parts ABC and ADC requires us to calculate the net effective current flowing through each section and the resultant magnetic field produced.
For each segment, we calculate their individual contributions based on their respective resistances, and by applying the Biot-Savart law, we arrive at the magnetic field at the center of the loop as: \[ B = \frac{\sqrt{2} \mu_0 I}{3 \pi a} \] Thus, the correct answer is Option 1.
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:

