Let the line PQ be the line of shortest distance between the lines \( L_1 \) and \( L_2 \).
The points on these lines are: Point \( P \) lies on \( L_1 \) and is of the form \( P(2\lambda + 1, 3\lambda + 2, 4\lambda + 3) \)
Point \( Q \) lies on \( L_2 \) and is of the form \( Q(3\mu + 2, 4\mu + 4, 5\mu + 5) \).
Dr's of PQ are \( 3\mu - 2\lambda + 1, 4\mu - 3\lambda + 2, 5\mu - 4\lambda + 2 \).
$(3\mu - 2\lambda + 1)2 + (4\mu - 3\lambda + 2)3 + (5\mu - 4\lambda + 2)4 = 0$
$38\mu - 29\lambda + 16 = 0 \quad \text{...(1)}$ $PQ \perp L_2$
$(3\mu - 2\lambda + 1)3 + (4\mu - 3\lambda + 2)4 + (5\mu - 4\lambda + 2)5 = 0$
$50\mu - 38\lambda + 21 = 0 \quad \text{...(2)}$ By (1) \& (2) $\lambda = \frac{1}{3}, \quad \mu = \frac{-1}{6}$
$\therefore P\left(\frac{5}{3}, 3, \frac{13}{3}\right) \quad \& \quad Q\left(\frac{3}{2}, \frac{10}{3}, \frac{25}{6}\right)$
Line PQ $\frac{x - \frac{5}{3}}{\frac{1}{6}} = \frac{y - 3}{\frac{-1}{3}} = \frac{z - \frac{13}{3}}{\frac{1}{6}}$ $\frac{x - \frac{5}{3}}{1} = \frac{y - 3}{-2} =\frac{z - \frac{13}{3}}{1}$ Point $\left(\frac{14}{3}, -3, \frac{22}{3}\right)$ lies on the line PQ.
As shown below, bob A of a pendulum having a massless string of length \( R \) is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):