Two projectile protons \( P_1 \) and \( P_2 \), both with spin up (along the \( +z \)-direction), are scattered from another fixed target proton \( T \) with spin up at rest in the \( xy \)-plane, as shown in the figure. They scatter one at a time. The nuclear interaction potential between both the projectiles and the target proton is \( \hat{\lambda} \vec{L} \cdot \vec{S} \), where \( \vec{L} \) is the orbital angular momentum of the system with respect to the target, \( \vec{S} \) is the spin angular momentum of the system, and \( \lambda \) is a negative constant in appropriate units. Which one of the following is correct?

The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
The IUPAC name of the following compound is:

Which of the following is the correct IUPAC name of the given organic compound (X)?
The structure of compound $ X $ is as follows:
$ \text{H}_3\text{C} - \text{CH}_3 - \text{CH} = \text{CH} - \text{H} - \text{Br} $