In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is:
The power of the combination of lenses is given by the sum of the individual powers. The powers of the lenses are:
$\Rightarrow p_{eq} = p_1 + p_2 + p_3$
$\Rightarrow p_1 = \left( \frac{4}{3} - 1 \right) \left( \frac{1}{\infty} - \frac{1}{-|R_1|} \right)$
$\Rightarrow p_1 = \left( \frac{1}{3|R_1|} \right)$
$\Rightarrow p_2 = \left( \frac{1}{2} \right) \left( \frac{1}{-|R_1|} - \frac{1}{-|R_2|} \right)$
$\Rightarrow p_2 = \frac{1}{2} \left( \frac{1}{|R_2|} - \frac{1}{|R_1|} \right)$
$\Rightarrow p_3 = \left( \frac{1}{3} \right) \left( \frac{1}{-|R_2|} - \frac{1}{\infty} \right) = - \frac{1}{3|R_2|}$
$\Rightarrow p_{eq} = \frac{1}{3|R_1|} - \frac{1}{3|R_2|} - \frac{1}{2} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$ $= - \frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$
Thus, the answer is \( \boxed{-\frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)} \).
Given: three thin lenses are formed from the same glass sheet; the upper and lower curved surfaces have radii (magnitudes) |R1| and |R2| respectively. The thickness of each lens is negligible compared to |R1| and |R2|. You chose Option 2:
\( \displaystyle \Phi_{\text{total}}=-\dfrac{1}{6}\!\Big(\dfrac{1}{|R_1|}-\dfrac{1}{|R_2|}\Big)\).
This matches Option 2, so your choice is correct.
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.