In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is:
The power of the combination of lenses is given by the sum of the individual powers. The powers of the lenses are:
$\Rightarrow p_{eq} = p_1 + p_2 + p_3$
$\Rightarrow p_1 = \left( \frac{4}{3} - 1 \right) \left( \frac{1}{\infty} - \frac{1}{-|R_1|} \right)$
$\Rightarrow p_1 = \left( \frac{1}{3|R_1|} \right)$
$\Rightarrow p_2 = \left( \frac{1}{2} \right) \left( \frac{1}{-|R_1|} - \frac{1}{-|R_2|} \right)$
$\Rightarrow p_2 = \frac{1}{2} \left( \frac{1}{|R_2|} - \frac{1}{|R_1|} \right)$
$\Rightarrow p_3 = \left( \frac{1}{3} \right) \left( \frac{1}{-|R_2|} - \frac{1}{\infty} \right) = - \frac{1}{3|R_2|}$
$\Rightarrow p_{eq} = \frac{1}{3|R_1|} - \frac{1}{3|R_2|} - \frac{1}{2} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$ $= - \frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$
Thus, the answer is \( \boxed{-\frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)} \).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: