In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is:
The power of the combination of lenses is given by the sum of the individual powers. The powers of the lenses are:
$\Rightarrow p_{eq} = p_1 + p_2 + p_3$
$\Rightarrow p_1 = \left( \frac{4}{3} - 1 \right) \left( \frac{1}{\infty} - \frac{1}{-|R_1|} \right)$
$\Rightarrow p_1 = \left( \frac{1}{3|R_1|} \right)$
$\Rightarrow p_2 = \left( \frac{1}{2} \right) \left( \frac{1}{-|R_1|} - \frac{1}{-|R_2|} \right)$
$\Rightarrow p_2 = \frac{1}{2} \left( \frac{1}{|R_2|} - \frac{1}{|R_1|} \right)$
$\Rightarrow p_3 = \left( \frac{1}{3} \right) \left( \frac{1}{-|R_2|} - \frac{1}{\infty} \right) = - \frac{1}{3|R_2|}$
$\Rightarrow p_{eq} = \frac{1}{3|R_1|} - \frac{1}{3|R_2|} - \frac{1}{2} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$ $= - \frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$
Thus, the answer is \( \boxed{-\frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)} \).
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to: