In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is:
The power of the combination of lenses is given by the sum of the individual powers. The powers of the lenses are:
$\Rightarrow p_{eq} = p_1 + p_2 + p_3$
$\Rightarrow p_1 = \left( \frac{4}{3} - 1 \right) \left( \frac{1}{\infty} - \frac{1}{-|R_1|} \right)$
$\Rightarrow p_1 = \left( \frac{1}{3|R_1|} \right)$
$\Rightarrow p_2 = \left( \frac{1}{2} \right) \left( \frac{1}{-|R_1|} - \frac{1}{-|R_2|} \right)$
$\Rightarrow p_2 = \frac{1}{2} \left( \frac{1}{|R_2|} - \frac{1}{|R_1|} \right)$
$\Rightarrow p_3 = \left( \frac{1}{3} \right) \left( \frac{1}{-|R_2|} - \frac{1}{\infty} \right) = - \frac{1}{3|R_2|}$
$\Rightarrow p_{eq} = \frac{1}{3|R_1|} - \frac{1}{3|R_2|} - \frac{1}{2} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$ $= - \frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$
Thus, the answer is \( \boxed{-\frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)} \).
Given: three thin lenses are formed from the same glass sheet; the upper and lower curved surfaces have radii (magnitudes) |R1| and |R2| respectively. The thickness of each lens is negligible compared to |R1| and |R2|. You chose Option 2:
\( \displaystyle \Phi_{\text{total}}=-\dfrac{1}{6}\!\Big(\dfrac{1}{|R_1|}-\dfrac{1}{|R_2|}\Big)\).
This matches Option 2, so your choice is correct.
The strain-stress plot for materials A, B, C and D is shown in the figure. Which material has the largest Young's modulus? 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
