In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is:
The power of the combination of lenses is given by the sum of the individual powers. The powers of the lenses are:
$\Rightarrow p_{eq} = p_1 + p_2 + p_3$
$\Rightarrow p_1 = \left( \frac{4}{3} - 1 \right) \left( \frac{1}{\infty} - \frac{1}{-|R_1|} \right)$
$\Rightarrow p_1 = \left( \frac{1}{3|R_1|} \right)$
$\Rightarrow p_2 = \left( \frac{1}{2} \right) \left( \frac{1}{-|R_1|} - \frac{1}{-|R_2|} \right)$
$\Rightarrow p_2 = \frac{1}{2} \left( \frac{1}{|R_2|} - \frac{1}{|R_1|} \right)$
$\Rightarrow p_3 = \left( \frac{1}{3} \right) \left( \frac{1}{-|R_2|} - \frac{1}{\infty} \right) = - \frac{1}{3|R_2|}$
$\Rightarrow p_{eq} = \frac{1}{3|R_1|} - \frac{1}{3|R_2|} - \frac{1}{2} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$ $= - \frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)$
Thus, the answer is \( \boxed{-\frac{1}{6} \left( \frac{1}{|R_1|} - \frac{1}{|R_2|} \right)} \).
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .