If \( (a, b) \) be the orthocenter of the triangle whose vertices are \( (1, 2) \), \( (2, 3) \), and \( (3, 1) \), and \( I_1 = \int_a^b x \sin(4x - x^2) dx \), \( I_2 = \int_a^b \sin(4x - x^2) dx \), then \( 36 \frac{I_1}{I_2} \) is equal to:
A vector has magnitude same as that of A = \(-3\hat{i} + 4\hat{j}\) and is parallel to B = \(4\hat{i} + 3\hat{j}\). The x and y components of this vector in the first quadrant are x and y respectively where:
\(x = \_\_\_\_\).
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
Choose the correct option
Shape
Two resistances of 100Ω and 200Ω are connected in series with a battery of 4V and negligible internal resistance. A voltmeter is used to measure voltage across the 100Ω resistance, which gives a reading of 1V. The resistance of the voltmeter must be _____ Ω.