A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².
To determine the moment of inertia (I) of the wheel, we start by using the relationship between torque (τ), moment of inertia (I), and angular acceleration (α). The equation is:
\( \tau = I \cdot \alpha \)
Given the force applied (F) and the radius (r) of the wheel, the torque can be calculated as:
\( \tau = F \cdot r \)
Substituting the given values, we have:
\( \tau = 10 \, \text{N} \times 0.2 \, \text{m} = 2 \, \text{Nm} \)
Next, use this torque in the relation \( \tau = I \cdot \alpha \) to solve for the moment of inertia (I):
\( I = \frac{\tau}{\alpha} = \frac{2 \, \text{Nm}}{2 \, \text{rad/s}^2} = 1 \, \text{kg m}^2 \)
Thus, the moment of inertia of the wheel is \( 1 \, \text{kg m}^2 \). This result fits exactly within the given range (1, 1).
We are given:
We need to find the moment of inertia (I) of the wheel.
The torque (\( \tau \)) produced by a force \( F \) applied tangentially at radius \( r \) is:
\[ \tau = F \times r \]
Also, the relation between torque, moment of inertia, and angular acceleration is:
\[ \tau = I \alpha \]
Therefore, the moment of inertia can be calculated as:
\[ I = \frac{\tau}{\alpha} = \frac{F r}{\alpha} \]
Step 1: Calculate the torque produced by the applied force.
\[ \tau = F \times r = 10 \times 0.2 = 2 \, \text{Nm} \]
Step 2: Use the relation between torque and angular acceleration to find \( I \):
\[ I = \frac{\tau}{\alpha} = \frac{2}{2} = 1 \, \text{kgm}^2 \]
The moment of inertia of the wheel is:
\[ \boxed{I = 1 \, \text{kgm}^2} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
Suppose there is a uniform circular disc of mass M kg and radius r m shown in figure. The shaded regions are cut out from the disc. The moment of inertia of the remainder about the axis A of the disc is given by $\frac{x{256} Mr^2$. The value of x is ___.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.