>
BITSAT
List of top Questions asked in BITSAT
The modulus of the complex number \( z \) such that \( |z + 3 - i| = 1 \) and \( \arg(z) = \pi \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
sets
If \( z, \bar{z}, -z, -\bar{z} \) forms a rectangle of area \( 2\sqrt{3} \) square units, then one such \( z \) is:
BITSAT - 2024
BITSAT
Mathematics
Complex numbers
If \( z_1, z_2, \dots, z_n \) are complex numbers such that \( |z_1| = |z_2| = \dots = |z_n| = 1 \), then \( |z_1 + z_2 + \dots + z_n| \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Complex numbers
If \( |z_1| = 2, |z_2| = 3, |z_3| = 4 \) and \( |2z_1 + 3z_2 + 4z_3| = 4 \), then the absolute value of \( 8z_2z_3 + 27z_1z_3 + 64z_1z_2 \) equals:
BITSAT - 2024
BITSAT
Mathematics
Complex numbers
A person invites a party of 10 friends at dinner and places so that 4 are on one round table and 6 on the other round table. Total number of ways in which he can arrange the guests is:
BITSAT - 2024
BITSAT
Mathematics
range
How many different nine-digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even positions?
BITSAT - 2024
BITSAT
Mathematics
range
If \( 22 P_{r+1} : 20 P_{r+2} = 11 : 52 \), then \( r \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
range
At an election, a voter may vote for any number of candidates not exceeding the number to be elected. If 4 candidates are to be elected out of the 12 contested in the election and voter votes for at least one candidate, then the number of ways of selections is:
BITSAT - 2024
BITSAT
Mathematics
range
The number of arrangements of all digits of 12345 such that at least 3 digits will not come in its position is:
BITSAT - 2024
BITSAT
Mathematics
range
If \( \sum_{k=1}^{n} k(k+1)(k-1) = pn^4 + qn^3 + tn^2 + sn \), where \( p, q, t, s \) are constants, then the value of \( s \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Series
There are four numbers of which the first three are in GP and the last three are in AP, whose common difference is 6. If the first and the last numbers are equal, then the two other numbers are:
BITSAT - 2024
BITSAT
Mathematics
Series
If \[ y = \tan^{-1} \left( \frac{1}{x^2 + x + 1} \right) + \tan^{-1} \left( \frac{1}{x^2 + 3x + 3} \right) + \tan^{-1} \left( \frac{1}{x^2 + 5x + 7} \right) + \cdots { (to n terms)} \], then \(\frac{dy}{dx}\) is:
BITSAT - 2024
BITSAT
Mathematics
Trigonometry
The coefficient of \(x^2\) term in the binomial expansion of \(\left(\frac{1}{3}x^{\frac{1}{3}} + x^{-\frac{1}{4}}\right)^{10}\) is:
BITSAT - 2024
BITSAT
Mathematics
Algebra
If the 17th and the 18th terms in the expansion of \((2 + a)^{50}\) are equal, then the coefficient of \(x^{35}\) in the expansion of \((a + x)^{-2}\) is:
BITSAT - 2024
BITSAT
Mathematics
Algebra
Let \(A\), \(B\) and \(C\) are the angles of a triangle and \(\tan \frac{A}{2} = 1/3\), \(\tan \frac{B}{2} = \frac{2}{3}\). Then, \(\tan \frac{C}{2}\) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Trigonometry
The sum of all values of \(x\) in \([0, 2\pi]\), for which \(x + \sin(2x) + \sin(3x) + \sin(4x) = 0\) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Trigonometry
The locus of the point of intersection of the lines \(x = a(1 - t^2)/(1 + t^2)\) and \(y = 2at/(1 + t^2)\) (t being a parameter) represents:
BITSAT - 2024
BITSAT
Mathematics
circle
The distance from the origin to the image of
$(1,1)$
with respect to the line
$x + y + 5 = 0$
is:
BITSAT - 2024
BITSAT
Mathematics
circle
A(3,2,0), B(5,3,2), C(-9,6,-3) are three points forming a triangle. AD, the bisector of angle
$BAC$
meets BC in D. Find the coordinates of D:
BITSAT - 2024
BITSAT
Mathematics
circle
The locus of the mid-point of a chord of the circle
$x^2 + y^2 = 4$
which subtends a right angle at the origin is:
BITSAT - 2024
BITSAT
Mathematics
circle
If \( p \) and \( q \) be the longest and the shortest distance respectively of the point
(-7,2)
from any point
(\(\alpha, \beta\))
on the curve whose equation is
\[ x^2 + y^2 - 10x - 14y - 51 = 0 \]
then the geometric mean (G.M.) of \( p \) is:
BITSAT - 2024
BITSAT
Mathematics
circle
From a point
A(0,3)
on the circle
\[ (x + 2)^2 + (y - 3)^2 = 4 \]
a chord AB is drawn and extended to a point Q such that
AQ = 2AB.
Then the locus of Q is:
BITSAT - 2024
BITSAT
Mathematics
circle
If the focus of the parabola
\[ (y - k)^2 = 4(x - h) \]
always lies between the lines
\(x + y = 1\)
and
\(x + y = 3\)
then:
BITSAT - 2024
BITSAT
Mathematics
Parabola
Let \(L_1\) be the length of the common chord of the curves
\[ x^2 + y^2 = 9 \quad {and} \quad y^2 = 8x \]
and let \(L_2\) be the length of the latus rectum of \(y^2 = 8x\). Then:
BITSAT - 2024
BITSAT
Mathematics
Parabola
The foci of the hyperbola
\[ 4x^2 - 9y^2 - 1 = 0 \]
are:
BITSAT - 2024
BITSAT
Mathematics
Hyperbola
Prev
1
...
18
19
20
21
22
...
64
Next