If the plane \( 3x + y + 2z + 6 = 0 \) { is parallel to the line} \[ \frac{3x - 1}{2b} = \frac{3 - y}{1} = \frac{z - 1}{a}, \] {then the value of \( 3a + 3b \) is:}
The smallest positive integral value of \( n \) such that \[ \left( \frac{1 + \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}}{1 + \sin \frac{\pi}{8} - i \cos \frac{\pi}{8}} \right)^n \] is purely imaginary, is equal to:
Given \[ 2x - y + 2z = 2, \quad x - 2y + z = -4, \quad x + y + \lambda z = 4, \] then the value of \( \lambda \) such that the given system of equations has no solution is:
The value of \[ \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} \] is:
If \( \alpha, \beta, \gamma \in [0, \pi] \) and if \( \alpha, \beta, \gamma \) are in AP, then \[ \frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha} \] {is equal to:}