Step 1: Evaluate \( g\left( \frac{8}{5} \right) \)
We are given that \( g(x) = |x| \). So,
\[
g\left( \frac{8}{5} \right) = \left| \frac{8}{5} \right| = \frac{8}{5}.
\]
Step 2: Evaluate \( f\left( g\left( \frac{8}{5} \right) \right) \)
Now, we need to evaluate \( f\left( g\left( \frac{8}{5} \right) \right) \), which is \( f\left( \frac{8}{5} \right) \). Recall that \( f(x) = [x] \), where \( [x] \) denotes the greatest integer less than or equal to \( x \). Thus,
\[
f\left( \frac{8}{5} \right) = \left\lfloor \frac{8}{5} \right\rfloor = \left\lfloor 1.6 \right\rfloor = 1.
\]
Step 3: Evaluate \( f\left( \frac{-8}{5} \right) \)
Next, we evaluate \( f\left( \frac{-8}{5} \right) \). Using the definition of \( f(x) = [x] \),
\[
f\left( \frac{-8}{5} \right) = \left\lfloor \frac{-8}{5} \right\rfloor = \left\lfloor -1.6 \right\rfloor = -2.
\]
Step 4: Evaluate \( g\left( f\left( \frac{-8}{5} \right) \right) \)
Now, we need to evaluate \( g\left( f\left( \frac{-8}{5} \right) \right) \), which is \( g(-2) \). Since \( g(x) = |x| \),
\[
g(-2) = | -2 | = 2.
\]
Step 5: Combine the results
We are asked to find the value of:
\[
f\left( g\left( \frac{8}{5} \right) \right) - g\left( f\left( \frac{-8}{5} \right) \right).
\]
Substituting the values we have computed:
\[
f\left( g\left( \frac{8}{5} \right) \right) = 1 \quad \text{and} \quad g\left( f\left( \frac{-8}{5} \right) \right) = 2.
\]
Thus,
\[
f\left( g\left( \frac{8}{5} \right) \right) - g\left( f\left( \frac{-8}{5} \right) \right) = 1 - 2 = -1.
\]
Final Answer:
The value is:
-1