Step 1: {Use the determinant property of adjugate matrices}
For a square matrix \( A \) of order \( n \), the determinant of its adjugate is given by:
\[
|{adj } A| = |A|^{n-1}.
\]
Since \( A \) is of order 3, we get:
\[
|{adj } A^2| = |A^2|^{3-1} = |A^2|^2.
\]
Step 2: {Simplify further}
\[
|A^2| = (|A|^2),
\]
\[
|{adj } A^2| = (|A|^2)^2 = |A|^4.
\]
Step 3: {Compute \( |{Adj}({Adj } A^2)| \)}
\[
|{Adj}({Adj } A^2)| = (|A|^4)^{3-1} = (|A|^4)^2 = |A|^8.
\]
Step 4: {Conclusion}
Thus, the correct answer is \( |A|^8 \).