Step 1: {Construct the determinant of the coefficient matrix}
\[ |A| = \begin{vmatrix} p+a & b & c \\ a & q+b & c \\ a & b & r+c \end{vmatrix}. \] Since the system has a non-trivial solution, the determinant must be zero: \[ |A| = 0. \] Step 2: {Expand determinant using row operations}
\[ (p + a)[(q + b)(r + c) - bc] - b[a(r + c) - ca] + c[ab - a(q + b)] = 0. \] \[ (p + a)(qr + qc + br) - b(ar) + c[-aq] = 0. \] Step 3: {Divide by \( pqr \)}
\[ \frac{pqr}{pqr} + \frac{pqc}{pqr} + \frac{prb}{pqr} + \frac{qra}{pqr} = 0. \] \[ 1 + \frac{c}{r} + \frac{b}{q} + \frac{a}{p} = 0. \] Step 4: {Conclusion}
a/p + b/q + c/r = -1.