Step 1: Understanding the equation
We are given the following equation:
\[
\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix}
+
\begin{vmatrix} 1 - x & 1 & 1 \\ 1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{vmatrix} = 0,
\]
where \( x \) is a complex root. We need to find \( x^{2007} + x^{-2007} \).
Step 2: Simplifying the first determinant
Consider the first determinant:
\[
D_1 = \begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix}.
\]
We can expand along the first row to simplify this determinant:
\[
D_1 = 1 \cdot \begin{vmatrix} 1 & x \\ x & 1 \end{vmatrix}
- x \cdot \begin{vmatrix} x & x \\ x & 1 \end{vmatrix}
+ x \cdot \begin{vmatrix} x & 1 \\ x & x \end{vmatrix}.
\]
Now compute the 2x2 determinants:
\[
\begin{vmatrix} 1 & x \\ x & 1 \end{vmatrix} = 1 \cdot 1 - x \cdot x = 1 - x^2,
\]
\[
\begin{vmatrix} x & x \\ x & 1 \end{vmatrix} = x \cdot 1 - x \cdot x = x - x^2,
\]
\[
\begin{vmatrix} x & 1 \\ x & x \end{vmatrix} = x \cdot x - 1 \cdot x = x^2 - x.
\]
Substitute these back into the expansion:
\[
D_1 = 1 \cdot (1 - x^2) - x \cdot (x - x^2) + x \cdot (x^2 - x) = 1 - x^2 - x(x - x^2) + x(x^2 - x).
\]
Simplify further:
\[
D_1 = 1 - x^2 - x^2 + x^3 + x^3 - x^2 = 1 - 3x^2 + 2x^3.
\]
Step 3: Simplifying the second determinant
Now consider the second determinant:
\[
D_2 = \begin{vmatrix} 1 - x & 1 & 1 \\ 1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{vmatrix}.
\]
We can expand along the first row to simplify this determinant:
\[
D_2 = (1 - x) \cdot \begin{vmatrix} 1 - x & 1 \\ 1 & 1 - x \end{vmatrix}
- 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 1 - x \end{vmatrix}
+ 1 \cdot \begin{vmatrix} 1 & 1 - x \\ 1 & 1 \end{vmatrix}.
\]
Now compute the 2x2 determinants:
\[
\begin{vmatrix} 1 - x & 1 \\ 1 & 1 - x \end{vmatrix} = (1 - x)(1 - x) - 1 \cdot 1 = (1 - x)^2 - 1 = x^2 - 2x,
\]
\[
\begin{vmatrix} 1 & 1 \\ 1 & 1 - x \end{vmatrix} = 1 \cdot (1 - x) - 1 \cdot 1 = 1 - x - 1 = -x,
\]
\[
\begin{vmatrix} 1 & 1 - x \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - (1 - x) \cdot 1 = 1 - (1 - x) = x.
\]
Substitute these back into the expansion:
\[
D_2 = (1 - x) \cdot (x^2 - 2x) - 1 \cdot (-x) + 1 \cdot (x) = (1 - x)(x^2 - 2x) + x + x.
\]
Now expand the first term:
\[
D_2 = (1 - x)(x^2 - 2x) = x^2 - 2x - x^3 + 2x^2 = -x^3 + 3x^2 - 2x.
\]
So:
\[
D_2 = -x^3 + 3x^2 - 2x + 2x = -x^3 + 3x^2.
\]
Step 4: Combining the results
Now substitute \( D_1 \) and \( D_2 \) into the original equation:
\[
D_1 + D_2 = 0,
\]
\[
(1 - 3x^2 + 2x^3) + (-x^3 + 3x^2) = 0,
\]
\[
1 - 3x^2 + 2x^3 - x^3 + 3x^2 = 0,
\]
\[
1 + x^3 = 0,
\]
\[
x^3 = -1,
\]
\[
x = -1.
\]
Step 5: Final answer
We are asked to find \( x^{2007} + x^{-2007} \). Since \( x = -1 \), we have:
\[
x^{2007} = (-1)^{2007} = -1 \quad \text{and} \quad x^{-2007} = (-1)^{-2007} = -1.
\]
Thus:
\[
x^{2007} + x^{-2007} = -1 + (-1) = -2.
\]
The correct answer is: -2