Question:

The function \[ f(x) = \frac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}}, \] where \( x \) is not an integral multiple of \( \pi \) and \( \lfloor \cdot \rfloor \) denotes the greatest integer function, is:

Show Hint

A function is odd if \( f(-x) = -f(x) \) and even if \( f(-x) = f(x) \).
Updated On: May 21, 2025
  • an odd function
  • an even function
  • neither odd nor even
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

Step 1: {Compute \( f(-x) \)} 
\[ f(-x) = \frac{\cos(-x)}{\left\lfloor \frac{2(-x)}{\pi} \right\rfloor + \frac{1}{2}}. \] Using \( \cos(-x) = \cos x \) and property of floor function: \[ \left\lfloor \frac{2(-x)}{\pi} \right\rfloor = - \left\lfloor \frac{2x}{\pi} \right\rfloor - 1. \] Step 2: {Compare \( f(-x) \) with \( -f(x) \)} 
\[ f(-x) = -f(x). \] Step 3: {Conclusion} 
Since \( f(-x) = -f(x) \), the function is odd.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Check if the function is odd
We are given the function \( f(x) = \frac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}} \), where \( x \) is not an integral multiple of \( \pi \) and \( \lfloor \cdot \rfloor \) denotes the greatest integer function. To check if the function is odd, we need to verify if \( f(-x) = -f(x) \). Let's compute \( f(-x) \): \[ f(-x) = \frac{\cos(-x)}{\left\lfloor \frac{2(-x)}{\pi} \right\rfloor + \frac{1}{2}}. \] Using the identity \( \cos(-x) = \cos(x) \), we have: \[ f(-x) = \frac{\cos x}{\left\lfloor \frac{-2x}{\pi} \right\rfloor + \frac{1}{2}}. \] Now, consider the behavior of the greatest integer function \( \lfloor \cdot \rfloor \). For negative values of \( x \), the floor function \( \left\lfloor \frac{-2x}{\pi} \right\rfloor \) will be equal to \( \left\lfloor -\frac{2x}{\pi} \right\rfloor \), which is the negative of \( \left\lfloor \frac{2x}{\pi} \right\rfloor \). Therefore: \[ \left\lfloor \frac{-2x}{\pi} \right\rfloor = -\left\lfloor \frac{2x}{\pi} \right\rfloor - 1. \] Substitute this back into \( f(-x) \): \[ f(-x) = \frac{\cos x}{-\left\lfloor \frac{2x}{\pi} \right\rfloor - 1 + \frac{1}{2}}. \] Simplify: \[ f(-x) = \frac{\cos x}{-\left\lfloor \frac{2x}{\pi} \right\rfloor - \frac{1}{2}}. \] Now, if you observe carefully, this is the negative of the original expression for \( f(x) \). Thus: \[ f(-x) = -f(x). \] Step 2: Conclusion
Since \( f(-x) = -f(x) \), we conclude that the function is odd. Final Answer:
The function is:
an odd function
Was this answer helpful?
0
0