Step 1: {Compute \( f(-x) \)}
\[ f(-x) = \frac{\cos(-x)}{\left\lfloor \frac{2(-x)}{\pi} \right\rfloor + \frac{1}{2}}. \] Using \( \cos(-x) = \cos x \) and property of floor function: \[ \left\lfloor \frac{2(-x)}{\pi} \right\rfloor = - \left\lfloor \frac{2x}{\pi} \right\rfloor - 1. \] Step 2: {Compare \( f(-x) \) with \( -f(x) \)}
\[ f(-x) = -f(x). \] Step 3: {Conclusion}
Since \( f(-x) = -f(x) \), the function is odd.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]