Question:

The function \[ f(x) = \frac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}}, \] where \( x \) is not an integral multiple of \( \pi \) and \( \lfloor \cdot \rfloor \) denotes the greatest integer function, is:

Show Hint

A function is odd if \( f(-x) = -f(x) \) and even if \( f(-x) = f(x) \).
Updated On: Feb 4, 2025
  • an odd function
  • an even function
  • neither odd nor even
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: {Compute \( f(-x) \)} 
\[ f(-x) = \frac{\cos(-x)}{\left\lfloor \frac{2(-x)}{\pi} \right\rfloor + \frac{1}{2}}. \] Using \( \cos(-x) = \cos x \) and property of floor function: \[ \left\lfloor \frac{2(-x)}{\pi} \right\rfloor = - \left\lfloor \frac{2x}{\pi} \right\rfloor - 1. \] Step 2: {Compare \( f(-x) \) with \( -f(x) \)} 
\[ f(-x) = -f(x). \] Step 3: {Conclusion} 
Since \( f(-x) = -f(x) \), the function is odd.

Was this answer helpful?
0
0