Question:

If \( f: \mathbb{R} \to \mathbb{R} \), \( g: \mathbb{R} \to \mathbb{R} \) are defined by \( f(x) = 5x - 3 \), \( g(x) = x^2 + 3 \), then \( g \circ f^{-1}(3) \) is equal to

Show Hint

To find \( g \circ f^{-1} \), first determine \( f^{-1}(x) \), then substitute into \( g(x) \).
Updated On: Mar 26, 2025
  • \( \frac{25}{3} \)
  • \( \frac{111}{25} \)
  • \( \frac{9}{25} \)
  • \( \frac{25}{111} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: {Find \( f^{-1}(3) \)}
\[ y = f(x) = 5x - 3. \] \[ x = \frac{y + 3}{5}. \] \[ f^{-1}(3) = \frac{6}{5}. \] Step 2: {Compute \( g(f^{-1}(3)) \)}
\[ g(x) = x^2 + 3. \] \[ g \left( \frac{6}{5} \right) = \left( \frac{6}{5} \right)^2 + 3. \] \[ = \frac{36}{25} + 3 = \frac{111}{25}. \] Step 3: {Conclusion}
Thus, \( g \circ f^{-1}(3) = \frac{111}{25} \).
Was this answer helpful?
0
0