Step 1: Find the inverse function \( f^{-1}(x) \)
We are given \( f(x) = 5x - 3 \). To find the inverse, we solve for \( x \) in terms of \( y \):
\[
y = 5x - 3 \quad \Rightarrow \quad y + 3 = 5x \quad \Rightarrow \quad x = \frac{y + 3}{5}.
\]
Thus, the inverse function is:
\[
f^{-1}(x) = \frac{x + 3}{5}.
\]
Step 2: Calculate \( f^{-1}(3) \)
Substitute \( x = 3 \) into the inverse function:
\[
f^{-1}(3) = \frac{3 + 3}{5} = \frac{6}{5}.
\]
Step 3: Evaluate \( g \circ f^{-1}(3) \)
We are given \( g(x) = x^2 + 3 \), so we now evaluate \( g \) at \( f^{-1}(3) \), which is \( \frac{6}{5} \):
\[
g\left( \frac{6}{5} \right) = \left( \frac{6}{5} \right)^2 + 3 = \frac{36}{25} + 3 = \frac{36}{25} + \frac{75}{25} = \frac{111}{25}.
\]
Final Answer:
The value of \( g \circ f^{-1}(3) \) is:
\( \frac{111}{25} \)