Step 1: Given Matrices
We are given the following matrices:
\[
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
\]
We are also given the matrix \( X \), defined as:
\[
X = A P A^T.
\]
We need to find \( A^T X^{50} A \).
Step 2: Compute \( X \)
First, let's compute \( X = A P A^T \). We already know that:
\[
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},
\]
\[
P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
\]
We now calculate \( A P \):
\[
A P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.
\]
Next, we compute \( A P A^T \):
\[
A P A^T = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.
\]
Thus, we have:
\[
X = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.
\]
Step 3: Compute \( X^{50} \)
Now, let's find \( X^{50} \). Notice that \( X \) is a simple matrix of the form:
\[
X = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.
\]
This is a shear matrix, and we can compute higher powers of \( X \) as follows:
\[
X^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}.
\]
Thus, \( X^{50} \) is:
\[
X^{50} = \begin{bmatrix} 1 & -50 \\ 0 & 1 \end{bmatrix}.
\]
Step 4: Compute \( A^T X^{50} A \)
We now need to compute \( A^T X^{50} A \). Using the values of \( A^T \) and \( A \) and the computed \( X^{50} \), we have:
\[
A^T X^{50} A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -50 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]
First, compute the product \( X^{50} A \):
\[
X^{50} A = \begin{bmatrix} 1 & -50 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 50 \\ 0 & -1 \end{bmatrix}.
\]
Now compute \( A^T X^{50} A \):
\[
A^T X^{50} A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 50 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix}.
\]
Step 5: Conclusion
Thus, the value of \( A^T X^{50} A \) is:
\[
\begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix}.
\]
The correct answer is: \( \begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix} \)