Step 1: Evaluate \( \cos \left( \cot^{-1} \left( \frac{1}{2} \right) \right) \)
Let \( \theta = \cot^{-1} \left( \frac{1}{2} \right) \). Then, by the definition of inverse cotangent, we have:
\[
\cot \theta = \frac{1}{2}.
\]
Using the identity \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can write:
\[
\frac{\cos \theta}{\sin \theta} = \frac{1}{2}.
\]
This implies:
\[
\cos \theta = \frac{1}{2} \sin \theta.
\]
Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), substitute \( \cos \theta = \frac{1}{2} \sin \theta \):
\[
\left( \frac{1}{2} \sin \theta \right)^2 + \sin^2 \theta = 1.
\]
Simplifying:
\[
\frac{1}{4} \sin^2 \theta + \sin^2 \theta = 1 \quad \Rightarrow \quad \frac{5}{4} \sin^2 \theta = 1.
\]
Thus:
\[
\sin^2 \theta = \frac{4}{5} \quad \Rightarrow \quad \sin \theta = \frac{2}{\sqrt{5}}.
\]
Substitute this back to find \( \cos \theta \):
\[
\cos \theta = \frac{1}{2} \sin \theta = \frac{1}{2} \times \frac{2}{\sqrt{5}} = \frac{1}{\sqrt{5}}.
\]
Therefore:
\[
\cos \left( \cot^{-1} \left( \frac{1}{2} \right) \right) = \frac{1}{\sqrt{5}}.
\]
Step 2: Solve for \( x \) using \( \cot \left( \cos^{-1} x \right) \)
Next, we are given the equation:
\[
\cos \left( \cot^{-1} \left( \frac{1}{2} \right) \right) = \cot \left( \cos^{-1} x \right).
\]
From Step 1, we know that:
\[
\cos \left( \cot^{-1} \left( \frac{1}{2} \right) \right) = \frac{1}{\sqrt{5}}.
\]
Thus, we have the equation:
\[
\frac{1}{\sqrt{5}} = \cot \left( \cos^{-1} x \right).
\]
Now, recall that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), so we need to evaluate \( \cot \left( \cos^{-1} x \right) \). Let \( \theta = \cos^{-1} x \), then \( \cos \theta = x \), and using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we find:
\[
\sin^2 \theta = 1 - x^2 \quad \Rightarrow \quad \sin \theta = \sqrt{1 - x^2}.
\]
Thus:
\[
\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{x}{\sqrt{1 - x^2}}.
\]
Substituting into the equation:
\[
\frac{1}{\sqrt{5}} = \frac{x}{\sqrt{1 - x^2}}.
\]
Squaring both sides:
\[
\frac{1}{5} = \frac{x^2}{1 - x^2}.
\]
Multiplying both sides by \( 5(1 - x^2) \):
\[
1 = 5x^2 - 5x^4.
\]
Rearranging:
\[
5x^4 - 5x^2 + 1 = 0.
\]
Let \( y = x^2 \). The equation becomes:
\[
5y^2 - 5y + 1 = 0.
\]
Using the quadratic formula:
\[
y = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(5)(1)}}{2(5)} = \frac{5 \pm \sqrt{25 - 20}}{10} = \frac{5 \pm \sqrt{5}}{10}.
\]
Thus:
\[
y = \frac{5 + \sqrt{5}}{10} \quad \text{or} \quad y = \frac{5 - \sqrt{5}}{10}.
\]
Since \( y = x^2 \), we take the positive root. Therefore:
\[
x^2 = \frac{5 - \sqrt{5}}{10}.
\]
Thus:
\[
x = \frac{1}{\sqrt{6}}.
\]
Final Answer:
The value of \( x \) is:
\( \frac{1}{\sqrt{6}} \)