The principal value of the \( \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) will be:
Minimize Z = 5x + 3y \text{ subject to the constraints} \[ 4x + y \geq 80, \quad x + 5y \geq 115, \quad 3x + 2y \leq 150, \quad x \geq 0, \quad y \geq 0. \]
Find the value of \[ \int \frac{\sec^2 2x}{(\cot x - \tan x)^2} \, dx. \]
If \[ y = 500 e^{7x} + 600 e^{-7x}, \quad \text{then show that} \quad \frac{d^2 y}{dx^2} = 49y. \]
Find the area of the region enclosed by the ellipse \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]
Prove that \[ \int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx = \frac{\pi}{2} (\pi - 2). \]
Prove that the height of the cylinder of maximum volume inscribed in a sphere of radius \( R \) is \( \frac{2R}{\sqrt{3}} \).