Find the value of \[ \int \frac{\sec^2 2x}{(\cot x - \tan x)^2} \, dx. \]
If \[ y = 500 e^{7x} + 600 e^{-7x}, \quad \text{then show that} \quad \frac{d^2 y}{dx^2} = 49y. \]
Find the area of the region enclosed by the ellipse \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]
Prove that \[ \int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx = \frac{\pi}{2} (\pi - 2). \]
Prove that the height of the cylinder of maximum volume inscribed in a sphere of radius \( R \) is \( \frac{2R}{\sqrt{3}} \).
Solve the differential equation \[ (x + y) \, dy + (x - y) \, dx = 0, \quad \text{if} \quad y = 1 \text{ when } x = 1. \]
Show that the vectors \( 2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}, 3\hat{i} - 4\hat{j} - 4\hat{k} \) form the vertices of a right-angled triangle.