Given \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \), we have:
\[
\vec{c} = -(\vec{a} + \vec{b}).
\]
Now calculate the dot products:
\[
\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \vec{a} \cdot \vec{b} + \vec{b} \cdot (-\vec{a} - \vec{b}) + (-\vec{a} - \vec{b}) \cdot \vec{a}.
\]
Simplify:
\[
\vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} - \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} = -(\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b}).
\]
Since \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors:
\[
\vec{a} \cdot \vec{a} = \vec{b} \cdot \vec{b} = 1, \quad \text{so } \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -2.
\]