>
Exams
>
Mathematics
>
Vector Algebra
>
if a begin bmatrix 3 1 1 15 6 5 5 2 2 end bmatrix
Question:
If
\[ A = \begin{bmatrix} 3 & 1 & 1 \\ 15 & 6 & 5 \\ 5 & 2 & 2 \end{bmatrix} \]
then find \( A^{-1} \).
Show Hint
To find \( A^{-1} \), use \( A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \), where adjoint is the transpose of the cofactor matrix.
UP Board XII - 2024
UP Board XII
Updated On:
Mar 1, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
The inverse of a \( 3 \times 3 \) matrix is given by: \[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \] Computing \( \det(A) \): \[ \det(A) = 3(6 \cdot 2 - 5 \cdot 2) - 1(15 \cdot 2 - 5 \cdot 5) + 1(15 \cdot 2 - 6 \cdot 5) = 3(12 - 10) - (30 - 25) + (30 - 30) = 6 - 5 = 1. \] Since \( \det(A) = 1 \), we compute \( \text{adj}(A) \) and find: \[ A^{-1} = \begin{bmatrix} 4 & -1 & -1 \\ -5 & 2 & 1 \\ 5 & -2 & -1 \end{bmatrix}. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vector Algebra
Find the value of \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
For the two vectors \( \vec{a} \) and \( \vec{b} \), prove that \( |\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}| \) when \( \vec{a} \neq \vec{0} \) and \( \vec{b} \neq \vec{0} \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
Find the area of a triangle whose vertices are A(2, 2, 2), B(2, 1, 3) and C(3, 2, 1).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
Find the unit vector along the vector \( \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
If the position vectors of the points A and B are \(\hat{i}+\hat{j}+\hat{k}\) and \(2\hat{i}+5\hat{j}\) respectively, then find the unit vector along the straight line AB.
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
View More Questions
Questions Asked in UP Board XII exam
If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), then show that \(A^2 - 5A + 7I = O\). Using this, obtain \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
If \( y = \sin^{-1} x \), then prove that \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
If \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}\), then find \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
Solve: \( (1 + x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
Prove that \(\int_0^\pi \sqrt{\frac{1+\cos 2x}{2}} \, dx = 2\).
UP Board XII - 2025
Calculus
View Solution
View More Questions