Minimize Z = 5x + 3y \text{ subject to the constraints} \[ 4x + y \geq 80, \quad x + 5y \geq 115, \quad 3x + 2y \leq 150, \quad x \geq 0, \quad y \geq 0. \]
Step 1: Graph the constraints to form the feasible region.
Step 2: The objective function is \( Z = 5x + 3y \). Find the corner points of the feasible region.
Step 3: Evaluate \( Z \) at each corner point.
Step 4: Choose the corner point that gives the minimum value of \( Z \).
A person wants to invest at least ₹20,000 in plan A and ₹30,000 in plan B. The return rates are 9% and 10% respectively. He wants the total investment to be ₹80,000 and investment in A should not exceed investment in B. Which of the following is the correct LPP model (maximize return $ Z $)?
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $