Minimize Z = 5x + 3y \text{ subject to the constraints} \[ 4x + y \geq 80, \quad x + 5y \geq 115, \quad 3x + 2y \leq 150, \quad x \geq 0, \quad y \geq 0. \]
Step 1: Graph the constraints to form the feasible region.
Step 2: The objective function is \( Z = 5x + 3y \). Find the corner points of the feasible region.
Step 3: Evaluate \( Z \) at each corner point.
Step 4: Choose the corner point that gives the minimum value of \( Z \).
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $