>
Exams
>
Mathematics
>
Vector Algebra
>
if y cot x sin x x x then find frac dy dx
Question:
If \( y = (\cot x)^{\sin x} + x^x \), then find \( \frac{dy}{dx} \).
Show Hint
For functions like \( (\cot x)^{\sin x} \), use logarithmic differentiation; for \( x^x \), use \( e^{x \ln x} \).
UP Board XII - 2024
UP Board XII
Updated On:
Mar 1, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
For \( y = (\cot x)^{\sin x} + x^x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left((\cot x)^{\sin x}\right) + \frac{d}{dx}(x^x). \] 1. Differentiate \( (\cot x)^{\sin x} \): Let \( u = \sin x \ln (\cot x) \), then \( (\cot x)^{\sin x} = e^u \). \[ \frac{d}{dx} \left((\cot x)^{\sin x}\right) = e^u \cdot \frac{du}{dx}. \] \[ \frac{du}{dx} = \cos x \ln (\cot x) - \sin x \cdot \frac{\csc^2 x}{\cot x}. \] \[ \frac{d}{dx} \left((\cot x)^{\sin x}\right) = (\cot x)^{\sin x} \left[\cos x \ln (\cot x) - \frac{\sin x}{\cot x}\csc^2 x \right]. \] 2. Differentiate \( x^x \): Using \( x^x = e^{x \ln x} \): \[ \frac{d}{dx}(x^x) = x^x (\ln x + 1). \] Thus: \[ \frac{dy}{dx} = (\cot x)^{\sin x} \left[\cos x \ln (\cot x) - \frac{\sin x}{\cot x}\csc^2 x \right] + x^x (\ln x + 1). \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vector Algebra
Find the value of \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
For the two vectors \( \vec{a} \) and \( \vec{b} \), prove that \( |\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}| \) when \( \vec{a} \neq \vec{0} \) and \( \vec{b} \neq \vec{0} \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
Find the area of a triangle whose vertices are A(2, 2, 2), B(2, 1, 3) and C(3, 2, 1).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
Find the unit vector along the vector \( \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \).
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
If the position vectors of the points A and B are \(\hat{i}+\hat{j}+\hat{k}\) and \(2\hat{i}+5\hat{j}\) respectively, then find the unit vector along the straight line AB.
UP Board XII - 2025
Mathematics
Vector Algebra
View Solution
View More Questions
Questions Asked in UP Board XII exam
If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), then show that \(A^2 - 5A + 7I = O\). Using this, obtain \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
If \( y = \sin^{-1} x \), then prove that \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
If \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}\), then find \(A^{-1}\).
UP Board XII - 2025
Matrices
View Solution
Solve: \( (1 + x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0 \).
UP Board XII - 2025
Differential Equations
View Solution
Prove that \(\int_0^\pi \sqrt{\frac{1+\cos 2x}{2}} \, dx = 2\).
UP Board XII - 2025
Calculus
View Solution
View More Questions