The given 6266899d2bbfcb1799af2d57 is \( \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) \). Since the principal value of \( \cot^{-1}(x) \) is in the interval \( (0, \pi) \), we identify:
\[
\cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \quad \text{and} \quad \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}.
\]
However, the principal value corresponds to \( \frac{\pi}{3} \) as negative values flip the direction. The correct answer is ii) \( \frac{\pi}{3} \).