We are given:
\[
x = a(\theta + \sin \theta), \quad y = a(1 - \cos \theta).
\]
Differentiating \( x \) and \( y \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = a(1 + \cos \theta), \quad \frac{dy}{d\theta} = a\sin \theta.
\]
Using the chain rule, \( \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \):
\[
\frac{dy}{dx} = \frac{a\sin \theta}{a(1 + \cos \theta)} = \frac{\sin \theta}{1 + \cos \theta}.
\]