Find the value of \[ \int \frac{\sec^2 2x}{(\cot x - \tan x)^2} \, dx. \]
Step 1: Simplify the integrand using the identity for \( \cot x - \tan x \). We know that: \[ \cot x = \frac{1}{\tan x}, \quad \text{so} \quad \cot x - \tan x = \frac{1 - \tan^2 x}{\tan x}. \] Substitute this into the integral: \[ I = \int \frac{\sec^2 2x}{\left( \frac{1 - \tan^2 x}{\tan x} \right)^2} \, dx. \] This simplifies to: \[ I = \int \frac{\sec^2 2x \cdot \tan^2 x}{(1 - \tan^2 x)^2} \, dx. \]
Step 2: Apply a substitution to simplify the integral. Let: \[ u = \tan x, \quad du = \sec^2 x \, dx. \] The integral now becomes: \[ I = \int \frac{u^2 \cdot \sec^2 2x}{(1 - u^2)^2} \, du. \] At this point, we need a further substitution or simplification method to evaluate the integral, but due to its complexity, solving this exactly involves advanced trigonometric substitutions or numerical methods, which might be outside of simple manual calculation.
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $