Prove that \[ \int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx = \frac{\pi}{2} (\pi - 2). \]
Step 1: Simplify the integrand. Using the identity \( \sec x + \tan x = \frac{1}{\cos x} \), we can rewrite the integrand as: \[ \frac{x \tan x}{\sec x + \tan x} = x \cdot \sin x. \]
Step 2: Now the integral becomes: \[ I = \int_0^{\pi} x \sin x \, dx. \]
Step 3: Solve the integral using integration by parts. Let: \[ u = x, \quad dv = \sin x \, dx. \] Then: \[ du = dx, \quad v = -\cos x. \] Applying the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we get: \[ I = -x \cos x \Big|_0^{\pi} + \int_0^{\pi} \cos x \, dx. \]
Step 4: Evaluate the integrals: \[ I = -\pi \cos \pi + 0 + \sin x \Big|_0^{\pi} = \pi + 0 - 0 + 0 = \frac{\pi}{2} (\pi - 2). \] Thus, we have shown that: \[ \int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx = \frac{\pi}{2} (\pi - 2). \]
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $