Step 1: Compute \( \det(A) \)
\[ \det(A) = 2\begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} - (-3)\begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} + 5\begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix}. \] Simplify to find \( \det(A) \).Step 2: Compute \( \text{adj}(A) \)
Find the cofactor matrix of \( A \) and transpose it to get \( \text{adj}(A) \).Step 3: Compute \( A^{-1} \)
\[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A). \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $