>
questions
List of practice Questions
The value of \( \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The value of definite integral \( \int_0^{\pi/2} \log(\tan x) dx \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int_{5}^{9} \frac{\log 3x^2}{\log 3x^2 + \log (588 - 84x + 3x^2)} dx \]
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int \frac{x^2 (x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx \]
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
BITSAT - 2024
BITSAT
Mathematics
limits and derivatives
The value of \( \int_0^{\frac{\pi}{2}} \frac{\sin\left( \frac{\pi}{4} + x \right) + \sin\left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The line \(y = mx\) bisects the area enclosed by lines \(x = 0\), \(y = 0\), and \(x = \frac{3}{2}\) and the curve \(y = 1 + 4x - x^2\). Then, the value of \(m\) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If \( a, c, b \) are in GP, then the area of the triangle formed by the lines \( ax + by + c = 0 \) with the coordinate axes is equal to:
BITSAT - 2024
BITSAT
Mathematics
Vectors
If \( |Z|>2 \) and the coefficients of \( Z^{12} \) and \( \frac{1}{Z^{12}} \) in the Laurent series expansion of \[ \frac{1}{(1 - Z)(2 - Z)} \] are \( A \) and \( B \) respectively, then compute \( 2024 - A \).
TS PGECET - 2024
TS PGECET
Engineering Mathematics
Complex numbers
Three students A, B and C write an entrance exam. The chance that at least one of them passes the exam is \( \frac{3}{4} \). If the probability that A and C pass the exam are respectively \( \frac{1}{2} \) and \( \frac{1}{4} \), then the probability that B does not pass that exam is:
TS PGECET - 2024
TS PGECET
Engineering Mathematics
Probability
The area enclosed by the curves \( y = x^3 \) and \( y = \sqrt{x} \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The area of the region bounded by the curves \( x = y^2 - 2 \) and \( x = y \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If the area bounded by the curves \( y = ax^2 \) and \( x = ay^2 \) (where \( a>0 \)) is 3 sq. units, then the value of \( a \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
The solution of the differential equation \( (x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2 \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If \( \frac{dy}{dx} - y \log_e 2 = 2^{\sin x} (\cos x - 1) \log_e 2 \), then \( y \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
Let \( \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \). Then, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) depends on:}
BITSAT - 2024
BITSAT
Mathematics
Vectors
Let \( ABC \) be a triangle and \( \vec{a}, \vec{b}, \vec{c} \) be the position vectors of \( A, B, C \) respectively. Let \( D \) divide \( BC \) in the ratio \( 3:1 \) internally and \( E \) divide \( AD \) in the ratio \( 4:1 \) internally. Let \( BE \) meet \( AC \) in \( F \). If \( E \) divides \( BF \) in the ratio \( 3:2 \) internally then the position vector of \( F \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
If \( \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \), then the value of \( |\hat{i} \times (\vec{a} \times \hat{i})| + |\hat{j} \times (\vec{a} \times \hat{j})| + |\hat{k} \times (\vec{a} \times \hat{k})|^2 \) is equal to:}
BITSAT - 2024
BITSAT
Mathematics
Algebra
The magnitude of projection of the line joining \( (3,4,5) \) and \( (4,6,3) \) on the line joining \( (-1,2,4) \) and \( (1,0,5) \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
The angle between the lines whose direction cosines are given by the equations \( 3l + m + 5n = 0 \) and \( 6m - 2n + 5l = 0 \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
Let the acute angle bisector of the two planes \( x - 2y - 2z + 1 = 0 \) and \( 2x - 3y - 6z + 1 = 0 \) be the plane \( P \). Then which of the following points lies on \( P \)?
BITSAT - 2024
BITSAT
Mathematics
Plane
The probability of getting 10 in a single throw of three fair dice is:
BITSAT - 2024
BITSAT
Mathematics
Probability
In a binomial distribution, the mean is 4 and variance is 3. Then, its mode is:
BITSAT - 2024
BITSAT
Mathematics
binomial distribution
The probability that certain electronic component fails when first used is 0.10. If it does not fail immediately, the probability that it lasts for one year is 0.99. The probability that a new component will last for one year is
BITSAT - 2024
BITSAT
Mathematics
Probability
If \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = 2\hat{i} + \hat{j} + \hat{k} \) are two vectors and \( \vec{c} \) is a unit vector lying in the plane of \( \vec{a} \) and \( \vec{b} \), and if \( \vec{c} \) is perpendicular to \( \vec{b} \), then \( \vec{c} \cdot (\hat{i} + 2\hat{k}) = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
Prev
1
...
1796
1797
1798
1799
1800
...
7150
Next