The equilibrium reaction is:
\[ \text{Cr}_2\text{O}_7^{2-} + [\text{H}^+] + \text{OH}^- \rightleftharpoons 2\text{CrO}_4^{2-}. \]
In a basic medium (OH$^-$), the reaction shifts to the right to produce more CrO$_4^{2-}$, as OH$^-$ consumes H$^+$, reducing its concentration. Conversely, in an acidic medium (H$^+$), the equilibrium shifts to the left, favoring Cr$_2$O$_7^{2-}$.
Thus, the equilibrium shifts to the right in a basic medium.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)