The acidic strength of carboxylic acids is influenced by the electron-withdrawing or electron-donating effects of alkyl groups:
HCOOH (formic acid) is the most acidic as it has no electron-donating alkyl group, which would reduce acidity.
CH$_3$COOH (acetic acid) is less acidic because the methyl group (CH$_3$) is weakly electron-donating.
CH$_3$CH$_2$COOH (propionic acid) is even less acidic due to the larger electron-donating ethyl group.
CH$_3$CH$_2$CH$_2$COOH (butyric acid) is the least acidic because the longer alkyl chain has a stronger electron-donating effect.
The correct order of acidic strength is:
\[ \textbf{HCOOH > CH$_3$COOH > CH$_3$CH$_2$COOH > CH$_3$CH$_2$CH$_2$COOH}. \]
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
A hydrocarbon which does not belong to the same homologous series of carbon compounds is
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: