
To determine the number of geometrical isomers for the given structure:
Identifying Stereocenters: The given structure contains three stereocenters, which influence the overall geometric configurations.
Counting Geometrical Isomers: The maximum potential geometric isomers can be calculated using the formula:
Total Geometrical Isomers = 2n
where n is the number of stereocenters. In this case:
23 = 8
However, due to symmetry in the molecule, some configurations are equivalent, reducing the number of unique geometrical isomers.
Final Count: Considering the symmetry and equivalent configurations, the total number of unique geometrical isomers for the given structure is 4.
To determine the number of geometrical isomers possible for the given structure, follow these steps:
Conclusively, the solution meets the provided range of 4,4. Thus, the number of geometrical isomers possible is 4.
\(X\) is the number of geometrical isomers exhibited by \([\mathrm{Pt(NH_3)(H_2O)BrCl}]\).
\(Y\) is the number of optically inactive isomer(s) exhibited by \([\mathrm{CrCl_2(ox)_2}]^{3-}\).
\(Z\) is the number of geometrical isomers exhibited by \([\mathrm{Co(NH_3)_3(NO_2)_3}]\). Find the value of \(X + Y + Z\). }
For the thermal decomposition of reactant AB(g), the following plot is constructed. 
The half life of the reaction is 'x' min.
x =_______} min. (Nearest integer)}
The incorrect statements regarding geometrical isomerism are:
(A) Propene shows geometrical isomerism.
(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.
(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene.
(D) 2-methylbut-2-ene shows two geometrical isomers.
(E) Trans-isomer has lower melting point than cis isomer.


Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 