>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
The objective function of $LPP$ defined over the convex set attains its optimum value at
MHT CET - 2017
MHT CET
Mathematics
Linear Programming Problem
If $\int \sqrt{\frac{x - 5}{x -7}} dx = A \sqrt{x^2 - 12 x + 35 } + \log \, | x - 6 + \sqrt{x^2 - 12x + 35} | + C $ then $A = $
MHT CET - 2017
MHT CET
Mathematics
Integrals of Some Particular Functions
$\int^1_0 x \, \tan^{-1} x\,dx = $
MHT CET - 2017
MHT CET
Mathematics
Integrals of Some Particular Functions
The maximum value of $f(x) = \frac{\log \, x }{x} (x \neq 0 , x \neq 1)$ is
MHT CET - 2017
MHT CET
Mathematics
Application of derivatives
The number of principal solutions of $\tan 2 \theta = 1$ is
MHT CET - 2017
MHT CET
Mathematics
Trigonometric Functions
If
$z_1$
and
$z_2$
are z co-ordinates of the points of trisection of the segment joining the points
$A(2, 1, 4), B _1 + z_2 =$
MHT CET - 2017
MHT CET
Mathematics
introduction to three dimensional geometry
If the function \[ f(x) = \begin{cases} [ tan (\frac {\pi}{4}+x)]^{1/x} & \quad for\, x \neq 0\\ K \,\,\,\,\,\,\,\,\,\text{if } x =0 \end{cases} \] is continuous at
$x = 0$
, then
$K = ?$
MHT CET - 2017
MHT CET
Mathematics
Differentiability
The area of the region bounded by the lines
$y = 2x + 1, y = 3x + 1$
and
$x = 4$
is
MHT CET - 2017
MHT CET
Mathematics
applications of integrals
The value of $\cos^{-1} \left(\cot\left(\frac{\pi}{2}\right)\right) + \cos^{-1} \left(\sin\left(\frac{2\pi}{3}\right)\right) $ is
MHT CET - 2017
MHT CET
Mathematics
Properties of Inverse Trigonometric Functions
If $c$ denotes the contradiction then dual of the compound statement $\sim p \wedge ( q \vee c)$ is
MHT CET - 2017
MHT CET
Mathematics
mathematical reasoning
If vector $\vec{r}$ with d.c.s. $l, m, n$ is equally inclined to the co-ordinate axes, then the total number of such vectors is
MHT CET - 2017
MHT CET
Mathematics
Vector Algebra
The point on the curve $y = \sqrt{x - 1}$ where the tangent is perpendicular to the line $2x + y - 5 = 0 $ is
MHT CET - 2017
MHT CET
Mathematics
Tangents and Normals
The objective function $z = 4x_1 + 5x_2$, subject to $2x_1 + x_2 \geq 7 , 2x_1 + 3x_2 \leq 15 , x_2 \leq 3, x_1 , x_2 \geq 0 $ has minimum value at the point
MHT CET - 2017
MHT CET
Mathematics
Linear Programming Problem
The differential equation of all parabolas whose axis is $y-axis$ is
MHT CET - 2017
MHT CET
Mathematics
Differential equations
The particular solution of the differential equation
$xdy + 2ydx = 0$
, when
$x = 2, y = 1$
is
MHT CET - 2017
MHT CET
Mathematics
Differential equations
Direction cosines of the line
$\frac{x+2}{2} = \frac{2y-5}{3}, z = -1$
is
MHT CET - 2016
MHT CET
Mathematics
Three Dimensional Geometry
If $p :$ Every square is a rectangle $q :$ Every rhombus is a kite then truth values of $p ? q$ and $p ? q$ are __________ and ___________ respectively.
MHT CET - 2016
MHT CET
Mathematics
mathematical reasoning
If Matrix $A = \begin{bmatrix}1&2\\ 4&3\end{bmatrix}$ such that $Ax = I$, then $X = $_______
MHT CET - 2016
MHT CET
Mathematics
Determinants
If Rolle�s theorem for $f\left(x\right)= e^{x} \left(sinx - cosx\right)$ is verified on $[\pi/4$, $5 \pi/4]$, then the value of $c$ is
MHT CET - 2016
MHT CET
Mathematics
Differentiability
$\int \left(\frac{\left(x^{2}+2\right)a^{\left(x +tan^{-1}x\right)}}{x^{2}+1}\right)dx = $
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
Derivative of $log \left(sec\,\theta +tan \,\theta\right) $ with respect to $sec\, \theta$ at $\theta = \pi/4$ is
MHT CET - 2016
MHT CET
Mathematics
Differentiability
If
$A$
and
$B$
are foot of perpendicular drawn from point
$Q (a, b, c)$
to the planes
$yz$
and
$zx$
, then equation of plane through the points
$A, B$
and
$O$
is ___________
MHT CET - 2016
MHT CET
Mathematics
Three Dimensional Geometry
$\int\left(\frac{4e^{2}-25}{2e^{x}-5}\right)dx = Ax+B \,\,log |2e^{x}-5|+c$ then
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
For what value of
$k$
, the function defined by $ f(x) = \begin{cases} \frac{log(1+2x)sin\,x^\circ}{x^2} & \text{for } x \ge \text {0}\\ k & \text{for } x = \text{ 0} \end{cases}$ is continuous at
$x = 0$
?
MHT CET - 2016
MHT CET
Mathematics
Differentiability
If $\int\frac{f\left(x\right)}{log \left(sin\,x\right)}dx = log\left[log\,sin\,x\right]+c$ then $f\left(x\right)=$
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
Prev
1
...
4
5
6
7
8
...
11
Next