>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
Find the expected value and variance of \( X \) for the following p.m.f:
\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline P(X) & 0.2 & 0.3 & 0.1 & 0.15 & 0.25 \\ \hline \end{array} \]
MHT CET - 2024
MHT CET
Mathematics
Probability
A lot of 100 bulbs contains 10 defective bulbs. Five bulbs are selected at random from the lot and are sent to the retail store. Then the probability that the store will receive at most one defective bulb is:
MHT CET - 2024
MHT CET
Mathematics
Probability
The statement \( [(p \rightarrow q) \wedge \sim q] \rightarrow r \) is a tautology when \( r \) is equivalent to:
MHT CET - 2024
MHT CET
Mathematics
Logic gates
Integrate the function \( \int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx \):
MHT CET - 2024
MHT CET
Mathematics
Integration by Parts
If the statement \( p \leftrightarrow (q \rightarrow p) \) is false, then the true statement is:
MHT CET - 2024
MHT CET
Mathematics
Logic gates
The variance of the first 50 even natural numbers is:
MHT CET - 2024
MHT CET
Mathematics
Algebra of Complex Numbers
\( \sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \)
MHT CET - 2024
MHT CET
Mathematics
Trigonometry
If
\[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \]
and
\[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix}, \]
then the values of \( a \) and \( c \) are respectively:
MHT CET - 2024
MHT CET
Mathematics
linear inequalities
The p.m.f. of a random variable \( X \) is:
\[ P(X) = \frac{2x}{n(n+1)}, \quad x = 1, 2, 3, \ldots, n \] \[ P(X) = 0, \quad \text{Otherwise.} \] Then \( E(X) \) is:
MHT CET - 2024
MHT CET
Mathematics
Probability
If \[ B = \begin{bmatrix} 3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] is the adjoint of a 3x3 matrix \( A \) and \( |A| = 4 \), then \( \alpha \) is equal to:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
If \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \), then \( A^{-1} \) is:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The variance of the following probability distribution is:
\[ \begin{array}{|c|c|} \hline x & P(X) \\ \hline 0 & \frac{9}{16} \\ 1 & \frac{3}{8} \\ 2 & \frac{1}{16} \\ \hline \end{array} \]
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The negative of \( (p \land (\sim q)) \lor (\sim p) \) is equivalent to:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The converse of \( ((\sim p) \land q) \Rightarrow r \) is:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
Integrate the following function w.r.t. \( x \):
\[ \int \frac{e^{3x}}{e^{3x} + 1} \, dx \]
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
One of the principal solutions of \( \sqrt{3} \sec x = -2 \) is equal to:
MHT CET - 2024
MHT CET
Mathematics
Trigonometry
The angle between the lines, whose direction cosines \( l, m, n \) satisfy the equations:
\[ l + m + n = 0 \quad \text{and} \quad 2l^2 + 2m^2 - n^2 = 0, \]
is:
MHT CET - 2024
MHT CET
Mathematics
Three Dimensional Geometry
If \( f(x) = 2x^3 - 15x^2 - 144x - 7 \), then \( f(x) \) is strictly decreasing in:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
The surface area of a spherical balloon is increasing at the rate of \( 2 \, \text{cm}^2/\text{sec} \). Then the rate of increase in the volume of the balloon, when the radius of the balloon is \( 6 \, \text{cm} \), is:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
The distribution function \( F(X) \) of a discrete random variable \( X \) is given. Then \( P[X = 4] + P[X = 5] \):
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline X & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline F(X = x) & 0.2 & 0.37 & 0.48 & 0.62 & 0.85 & 1 \\ \hline \end{array} \]
MHT CET - 2024
MHT CET
Mathematics
Probability
If \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \), then \( A^{-1} \) is:
MHT CET - 2024
MHT CET
Mathematics
matrix transformation
If \( B = \begin{bmatrix} 3 & a & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \) is the adjoint of a \( 3 \times 3 \) matrix \( A \) and \( |A| = 4 \), then \( a \) is equal to:
MHT CET - 2024
MHT CET
Mathematics
matrix transformation
The equation of the plane passing through the point \( (1, 1, 1) \) and perpendicular to the planes \( 2x + y - 2z = 5 \) and \( 3x - 6y - 2z = 7 \) is:
MHT CET - 2024
MHT CET
Mathematics
Plane
If \( AX = B \), where
\[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \] then \( 2x + y - z \) is:
MHT CET - 2024
MHT CET
Mathematics
linear inequalities
The equation \( (\cos p - 1)x^2 + (\cos p)x + \sin p = 0 \), where \( x \) is a variable with real roots. Then the interval of \( p \) may be any one of the following:
MHT CET - 2024
MHT CET
Mathematics
Quadratic Equations
Prev
1
2
3
4
5
6
...
15
Next