>
Exams
>
Mathematics
>
linear inequalities
>
if a begin bmatrix 0 1 2 1 2 3 3 a 1 end bmatrix a
Question:
If
\[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \]
and
\[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix}, \]
then the values of \( a \) and \( c \) are respectively:
Show Hint
For matrix inverses, verify by computing \( A \cdot A^{-1} = I \) row by row and column by column for consistency.
MHT CET - 2024
MHT CET
Updated On:
Apr 15, 2025
\( \frac{1}{2}, \frac{1}{2} \)
\( -1, 1 \)
\( 2, -\frac{1}{2} \)
\( 1, -1 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
For \( A \cdot A^{-1} = I \) (the identity matrix), we verify the values of \( a \) and \( c \) such that: \[ \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix} = I. \]
Step 1:
Simplify for \( a \)
Consider the third row of \( A \) and the first column of \( A^{-1} \): \[ (3)(1) + (a)(-8) + (1)(5) = 0. \]
Simplify: \[ 3 - 8a + 5 = 0. \]
\[ 8 - 8a = 0 \quad \implies \quad a = 1. \]
Step 2:
Simplify for \( c \)
Consider the second row of \( A \) and the third column of \( A^{-1} \): \[ (1)(1) + (2)(2c) + (3)(1) = 0. \]
Simplify: \[ 1 + 4c + 3 = 0. \]
\[ 4c + 4 = 0 \quad \implies \quad c = -1. \]
Final Answer:
\[ \boxed{1, -1} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on linear inequalities
Solve the system of equations: \[ x + y = 5 \] \[ 2x - y = 4 \]
MHT CET - 2025
Mathematics
linear inequalities
View Solution
Solve the system of equations: \[ x + y = 10 \] \[ 3x - y = 5 \]
MHT CET - 2025
Mathematics
linear inequalities
View Solution
The sum of the ages of a father and his son is 60 years. The father is three times as old as the son. What is the son's age?
MHT CET - 2025
Mathematics
linear inequalities
View Solution
The solution set for the inequality
$ 13x - 5 \leq 15x + 4<7x + 12; x \in W $
COMEDK UGET - 2024
Mathematics
linear inequalities
View Solution
If \( AX = B \), where
\[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \] then \( 2x + y - z \) is:
MHT CET - 2024
Mathematics
linear inequalities
View Solution
View More Questions
Questions Asked in MHT CET exam
If \( \tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1
(\cos \alpha) = x \), then what is \( \sin \alpha \)?}
MHT CET - 2025
Trigonometric Identities
View Solution
Which hormone converts into amino acid?
MHT CET - 2025
Hormones
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
Choose a randomly selected leap year, in which 52 Saturdays and 53 Sundays are to be there. Given the following probability distribution:
Find the mean and standard deviation.
MHT CET - 2025
Probability
View Solution
View More Questions