>
Exams
>
Mathematics
>
linear inequalities
>
if a begin bmatrix 0 1 2 1 2 3 3 a 1 end bmatrix a
Question:
If
\[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \]
and
\[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix}, \]
then the values of \( a \) and \( c \) are respectively:
Show Hint
For matrix inverses, verify by computing \( A \cdot A^{-1} = I \) row by row and column by column for consistency.
MHT CET - 2024
MHT CET
Updated On:
Apr 15, 2025
\( \frac{1}{2}, \frac{1}{2} \)
\( -1, 1 \)
\( 2, -\frac{1}{2} \)
\( 1, -1 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
For \( A \cdot A^{-1} = I \) (the identity matrix), we verify the values of \( a \) and \( c \) such that: \[ \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix} = I. \]
Step 1:
Simplify for \( a \)
Consider the third row of \( A \) and the first column of \( A^{-1} \): \[ (3)(1) + (a)(-8) + (1)(5) = 0. \]
Simplify: \[ 3 - 8a + 5 = 0. \]
\[ 8 - 8a = 0 \quad \implies \quad a = 1. \]
Step 2:
Simplify for \( c \)
Consider the second row of \( A \) and the third column of \( A^{-1} \): \[ (1)(1) + (2)(2c) + (3)(1) = 0. \]
Simplify: \[ 1 + 4c + 3 = 0. \]
\[ 4c + 4 = 0 \quad \implies \quad c = -1. \]
Final Answer:
\[ \boxed{1, -1} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on linear inequalities
Solve the system of equations: \[ x + y = 5 \] \[ 2x - y = 4 \]
MHT CET - 2025
Mathematics
linear inequalities
View Solution
Solve the system of equations: \[ x + y = 10 \] \[ 3x - y = 5 \]
MHT CET - 2025
Mathematics
linear inequalities
View Solution
The sum of the ages of a father and his son is 60 years. The father is three times as old as the son. What is the son's age?
MHT CET - 2025
Mathematics
linear inequalities
View Solution
The solution set for the inequality
$ 13x - 5 \leq 15x + 4<7x + 12; x \in W $
COMEDK UGET - 2024
Mathematics
linear inequalities
View Solution
If \( AX = B \), where
\[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}, \] then \( 2x + y - z \) is:
MHT CET - 2024
Mathematics
linear inequalities
View Solution
View More Questions
Questions Asked in MHT CET exam
In the word "UNIVERSITY", find the probability that the two "I"s do not come together.
MHT CET - 2025
Probability
View Solution
A car accelerates uniformly from rest to a velocity of \( 25 \, \text{m/s} \) in \( 10 \, \text{seconds} \). What is the acceleration of the car?
MHT CET - 2025
Motion in a straight line
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
The value of the definite integral \( \int_0^{\pi} \sin^2 x \, dx \) is:
MHT CET - 2025
integral
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions