Step 1: Substitution.
Let \( u = 1 + \log \left( \tan \frac{x}{2} \right) \).
Differentiating both sides:
\[
\frac{du}{dx} = \frac{1}{\tan \frac{x}{2}} \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2}.
\]
Thus:
\[
du = \frac{\csc x}{2} \, dx \quad \Rightarrow \quad 2 du = \frac{\csc x}{\cos^2 u} \, dx.
\]
Step 2: Substituting into the integral.
The integral becomes:
\[
I = 2 \int \sec^2 u \, du.
\]
Step 3: Solving the integral.
The integral of \( \sec^2 u \) is \( \tan u \), so we have:
\[
I = 2 \tan u + C.
\]
Step 4: Substitute back the value of \( u \).
Substituting \( u = 1 + \log \left( \tan \frac{x}{2} \right) \) into the result:
\[
I = 2 \tan \left( 1 + \log \left( \tan \frac{x}{2} \right) \right) + C.
\]
Since the constant factor of 2 can be simplified, the final result is:
\[
I = \tan \left( 1 + \log \left( \tan \frac{x}{2} \right) \right) + C.
\]