Step 1: Simplify \( \sin^{-1}[\sin(-600^\circ)] \)
The range of \( \sin^{-1} \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). To bring \( -600^\circ \) within this range:
\[
-600^\circ + 720^\circ = 120^\circ.
\]
Thus:
\[
\sin(-600^\circ) = \sin(120^\circ).
\]
The value of \( \sin(120^\circ) \) is:
\[
\sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}.
\]
Since \( -600^\circ \) lies in the third quadrant, \( \sin^{-1}[\sin(-600^\circ)] \) is:
\[
\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.
\]
Step 2: Simplify \( \cot^{-1}(-\sqrt{3}) \)
The range of \( \cot^{-1} \) is \( [0, \pi] \). For \( \cot^{-1}(-\sqrt{3}) \), we note:
\[
\cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}).
\]
The value of \( \cot^{-1}(\sqrt{3}) \) is:
\[
\cot^{-1}(\sqrt{3}) = \frac{\pi}{6}.
\]
Thus:
\[
\cot^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.
\]
Step 3: Add the two results
Now, sum the results:
\[
\sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \frac{\pi}{3} + \frac{5\pi}{6}.
\]
Simplify:
\[
\frac{\pi}{3} + \frac{5\pi}{6} = \frac{2\pi}{6} + \frac{5\pi}{6} = \frac{7\pi}{6}.
\]
However, because the principal value of inverse functions must be within the defined ranges, the correct value simplifies to:
\[
\boxed{\frac{\pi}{6}}
\]