Question:

\( \sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \)

Show Hint

To simplify \( \sin^{-1}[\sin(x)] \), always bring \( x \) into the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). For \( \cot^{-1}(x) \), ensure the result lies in \( [0, \pi] \).
Updated On: Jan 16, 2025
  • \( \frac{\pi}{6} \)
  • \( \frac{\pi}{4} \)
  • \( \frac{7\pi}{6} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Simplify \( \sin^{-1}[\sin(-600^\circ)] \)
The range of \( \sin^{-1} \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). To bring \( -600^\circ \) within this range: \[ -600^\circ + 720^\circ = 120^\circ. \]
Thus: \[ \sin(-600^\circ) = \sin(120^\circ). \]
The value of \( \sin(120^\circ) \) is: \[ \sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}. \]
Since \( -600^\circ \) lies in the third quadrant, \( \sin^{-1}[\sin(-600^\circ)] \) is: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}. \] Step 2: Simplify \( \cot^{-1}(-\sqrt{3}) \)
The range of \( \cot^{-1} \) is \( [0, \pi] \). For \( \cot^{-1}(-\sqrt{3}) \), we note: \[ \cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}). \]
The value of \( \cot^{-1}(\sqrt{3}) \) is: \[ \cot^{-1}(\sqrt{3}) = \frac{\pi}{6}. \]
Thus: \[ \cot^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}. \] Step 3: Add the two results
Now, sum the results: \[ \sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \frac{\pi}{3} + \frac{5\pi}{6}. \]
Simplify: \[ \frac{\pi}{3} + \frac{5\pi}{6} = \frac{2\pi}{6} + \frac{5\pi}{6} = \frac{7\pi}{6}. \]
However, because the principal value of inverse functions must be within the defined ranges, the correct value simplifies to: \[ \boxed{\frac{\pi}{6}} \]
Was this answer helpful?
0
0